17 resultados para 4-TRIMETHYLPENTYL PHOSPHINIC ACID
Resumo:
Fifty members of a novel class of antimicrobial compounds, 2-(4-R-phenoxymethyl)benzoic acid thioureides, were synthesized and characterized with respect to their activities against three parasites of human relevance, namely the protozoa Giardia lamblia and Toxoplasma gondii, and the larval (metacestode) stage of the tapeworm Echinococcus multilocularis. To determine the selective toxicity of these compounds, the human colon cancer cell line Caco2 and primary cultures of human foreskin fibroblasts (HFF) were also investigated. The new thioureides were obtained in a three-step-reaction process and subsequently characterized by their physical constants (melting point, solubility). The chemical structures were elucidated by (1)H NMR, (13)C NMR, IR spectral methods and elemental analysis. The analyses confirmed the final and intermediate compound structures and the synthesis. The compounds were then tested on the parasites in vitro. All thioureides, except two compounds with a nitro group, were totally ineffective against Giardia lamblia. 23 compounds inhibited the proliferation of T. gondii, three of them with an IC(50) of approximately 1 microM. The structural integrity of E. multilocularis metacestodes was affected by 22 compounds. In contrast, HFF were not susceptible to any of these thioureides, while Caco2 cells were affected by 17 compounds, two of them inhibiting proliferation with an IC(50) in the micromolar range. Thioureides may thus present a promising class of anti-infective agents.
Resumo:
Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. • Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest.