50 resultados para 320305 Medical Biochemistry - Proteins and Peptides
Resumo:
Meta-analysis, the statistical combination of results from several studies to produce a single estimate of a treatment effect or size of an association, continues to attract controversy. We illustrate and discuss the promises and limitations of meta-analysis. Meta-analysis of clinical trials can prevent delays in the introduction of effective treatments or lead to the timely identification of adverse effects. However, meta-analyses are liable to numerous biases, both at the level of the individual study and the selection of studies for inclusion in meta-analysis. The biases and confounding factors that threaten the validity of individual studies will also affect meta-analyses of observational studies. We argue that meta-analyses should only be performed within the framework of systematic reviews that have been prepared using methods that minimize bias and address the combinability of studies.
Resumo:
In eukaryotes, small RNAs (sRNAs) have key roles in development, gene expression regulation, and genome integrity maintenance. In ciliates, such as Paramecium, sRNAs form the heart of an epigenetic system that has evolved from core eukaryotic gene silencing components to selectively target DNA for deletion. In Paramecium, somatic genome development from the germline genome accurately eliminates the bulk of typically gene-interrupting, noncoding DNA. We have discovered an sRNA class (internal eliminated sequence [IES] sRNAs [iesRNAs]), arising later during Paramecium development, which originates from and precisely delineates germline DNA (IESs) and complements the initial sRNAs ("scan" RNAs [scnRNAs]) in targeting DNA for elimination. We show that whole-genome duplications have facilitated successive differentiations of Paramecium Dicer-like proteins, leading to cooperation between Dcl2 and Dcl3 to produce scnRNAs and to the production of iesRNAs by Dcl5. These innovations highlight the ability of sRNA systems to acquire capabilities, including those in genome development and integrity.
Resumo:
BACKGROUND Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen of fisheries worldwide. Despite the identification of several virulence factors the pathogenesis is still poorly understood. We have used high-throughput proteomics to display the differences between in vitro secretome of A. salmonicida wild-type (wt, hypervirulent, JF5054) and T3SS-deficient (isogenic ΔascV, extremely low-virulent, JF2747) strains in exponential (GP) and stationary (SP) phases of growth. RESULTS Among the different experimental conditions we obtained semi-quantitative values for a total of 2136 A. salmonicida proteins. Proteins of specific A. salmonicida species were proportionally less detected than proteins common to the Aeromonas genus or those shared with other Aeromonas species, suggesting that in vitro growth did not induce the expression of these genes. Four detected proteins which are unidentified in the genome of reference strains of A. salmonicida were homologous to components of the conjugative T4SS of A. hydrophila pRA1 plasmid. Polypeptides of three proteins which are specific to the 01-B526 strain were also discovered. In supernatants (SNs), the number of detected proteins was higher in SP (326 for wt vs 329 for mutant) than in GP (275 for wt vs 263 for mutant). In pellets, the number of identified proteins (a total of 1536) was approximately the same between GP and SP. Numerous highly conserved cytoplasmic proteins were present in A. salmonicida SNs (mainly EF-Tu, EF-G, EF-P, EF-Ts, TypA, AlaS, ribosomal proteins, HtpG, DnaK, peptidyl-prolyl cis-trans isomerases, GAPDH, Enolase, FbaA, TpiA, Pgk, TktA, AckA, AcnB, Mdh, AhpC, Tpx, SodB and PNPase), and several evidences support the theory that their extracellular localization was not the result of cell lysis. According to the Cluster of Orthologous Groups classification, 29% of excreted proteins in A. salmonicida SNs were currently poorly characterized. CONCLUSIONS In this part of our work we elucidated the whole in vitro exoproteome of hypervirulent A. salmonicida subsp. salmonicida and showed the secretion of several highly conserved cytoplasmic proteins with putative moonlighting functions and roles in virulence. All together, our results offer new information about the pathogenesis of furunculosis and point out potential candidates for vaccine development.
Resumo:
IMPORTANCE Because effective interventions to reduce hospital readmissions are often expensive to implement, a score to predict potentially avoidable readmissions may help target the patients most likely to benefit. OBJECTIVE To derive and internally validate a prediction model for potentially avoidable 30-day hospital readmissions in medical patients using administrative and clinical data readily available prior to discharge. DESIGN Retrospective cohort study. SETTING Academic medical center in Boston, Massachusetts. PARTICIPANTS All patient discharges from any medical services between July 1, 2009, and June 30, 2010. MAIN OUTCOME MEASURES Potentially avoidable 30-day readmissions to 3 hospitals of the Partners HealthCare network were identified using a validated computerized algorithm based on administrative data (SQLape). A simple score was developed using multivariable logistic regression, with two-thirds of the sample randomly selected as the derivation cohort and one-third as the validation cohort. RESULTS Among 10 731 eligible discharges, 2398 discharges (22.3%) were followed by a 30-day readmission, of which 879 (8.5% of all discharges) were identified as potentially avoidable. The prediction score identified 7 independent factors, referred to as the HOSPITAL score: h emoglobin at discharge, discharge from an o ncology service, s odium level at discharge, p rocedure during the index admission, i ndex t ype of admission, number of a dmissions during the last 12 months, and l ength of stay. In the validation set, 26.7% of the patients were classified as high risk, with an estimated potentially avoidable readmission risk of 18.0% (observed, 18.2%). The HOSPITAL score had fair discriminatory power (C statistic, 0.71) and had good calibration. CONCLUSIONS AND RELEVANCE This simple prediction model identifies before discharge the risk of potentially avoidable 30-day readmission in medical patients. This score has potential to easily identify patients who may need more intensive transitional care interventions.
Resumo:
BACKGROUND Oesophageal adenocarcinomas often show resistances to chemotherapy (CTX), therefore, it would be of high interest to better understand the mechanisms of resistance. We examined the expression of heat-shock proteins (HSPs) and glucose-regulated proteins (GRPs) in pretherapeutic biopsies of oesophageal adenocarcinomas to assess their potential role in CTX response. METHODS Ninety biopsies of locally advanced adenocarcinomas before platin/5-fluorouracil (FU)-based CTX were investigated by reverse phase protein arrays (RPPAs), immunohistochemistry (IHC) and quantitative RT-PCR. RESULTS CTX response strongly correlated with survival (P=0.001). Two groups of tumours with specific protein expression patterns were identified by RPPA: Group A was characterised by low expression of HSP90, HSP27 and p-HSP27((Ser15, Ser78, Ser82)) and high expression of GRP78, GRP94, HSP70 and HSP60; Group B exhibited the inverse pattern. Tumours of Group A were more likely to respond to CTX, resulting in histopathological tumour regression (P=0.041) and post-therapeutic down-categorisation from cT3 to ypT0-T2 (P=0.040). High HSP60 protein (IHC) and mRNA expression were also associated with tumour down-categorisation (P=0.016 and P=0.004). CONCLUSION Our findings may enhance the understanding of CTX response mechanisms, might be helpful to predict CTX response and might have translational relevance as they highlight the role of potentially targetable cellular stress proteins in the context of CTX response.
Resumo:
T cell uropods are enriched in specific proteins including adhesion receptors such as P-selectin glycoprotein ligand-1 (PSGL-1), lipid raft-associated proteins such as flotillins and ezrin/radixin/moesin (ERM) proteins which associate with cholesterol-rich raft domains and anchor adhesion receptors to the actin cytoskeleton. Using dominant mutants and siRNA technology we have tested the interactions among these proteins and their role in shaping the T cell uropod. Expression of wild type (WT) ezrin-EGFP failed to affect the morphology of human T cells or chemokine-induced uropod recruitment of PSGL-1 and flotillin-1 and -2. In contrast, expression of constitutively active T567D ezrin-EGFP induced a motile, polarized phenotype in some of the transfected T cells, even in the absence of chemokine. These cells featured F-actin-rich ruffles in the front and uropod enrichment of PSGL-1 and flotillins. T567D ezrin-EGFP was itself strongly enriched in the rear of the polarized T cells. Uropod formation induced by T567D ezrin-EGFP was actin-dependent as it was attenuated by inhibition of Rho-kinase or myosin II, and abolished by disruption of actin filaments. While expression of constitutively active ezrin enhanced cell polarity, expression of a dominant-negative deletion mutant of ezrin, 1-310 ezrin-EGFP, markedly reduced uropod formation induced by the chemokine SDF-1, T cell front-tail polarity, and capping of PSGL-1 and flotillins. Transfection of T cells with WT or T567D ezrin did not affect chemokine-mediated chemotaxis whereas 1-310 ezrin significantly impaired spontaneous 2D migration and chemotaxis. siRNA-mediated downregulation of flotillins in murine T cells attenuated moesin capping and uropod formation, indicating that ERM proteins and flotillins cooperate in uropod formation. In summary, our results indicate that activated ERM proteins function together with flotillins to promote efficient chemotaxis of T cells by structuring the uropod of migrating T cells.
Resumo:
Coilin is the signature protein of the Cajal body (CB), a nuclear suborganelle involved in the biogenesis of small nuclear ribonucleoproteins (snRNPs). Newly imported Sm-class snRNPs are thought to traffic through CBs before proceeding to their final nuclear destinations. Loss of coilin function in mice leads to significant viability and fertility problems. Coilin interacts directly with the spinal muscular atrophy (SMA) protein via dimethylarginine residues in its C-terminal domain. Although coilin hypomethylation results in delocalization of survival of motor neurons (SMN) from CBs, high concentrations of snRNPs remain within these structures. Thus, CBs appear to be involved in snRNP maturation, but factors that tether snRNPs to CBs have not been described. In this report, we demonstrate that the coilin C-terminal domain binds directly to various Sm and Lsm proteins via their Sm motifs. We show that the region of coilin responsible for this binding activity is separable from that which binds to SMN. Interestingly, U2, U4, U5, and U6 snRNPs interact with the coilin C-terminal domain in a glutathione S-transferase (GST)-pulldown assay, whereas U1 and U7 snRNPs do not. Thus, the ability to interact with free Sm (and Lsm) proteins as well as with intact snRNPs, indicates that coilin and CBs may facilitate the modification of newly formed snRNPs, the regeneration of 'mature' snRNPs, or the reclamation of unassembled snRNP components.
Resumo:
Background: Aim of the study was to test lagged reciprocal effects of depressive symptoms and acute low back pain (LBP) across the first weeks of primary care. Methods: In a prospective inception cohort study, 221 primary care patients with acute or subacute LBP were assessed at the time of initial consultation and then followed up at three and six weeks. Key measures were depressive symptoms (modified Zung Self-Rating Depression Scale) and LBP (sensory pain, present pain index and visual analogue scale of the Short-Form McGill Pain Questionnaire). Results: When only cross-lagged effects of six weeks were tested, a reciprocal positive relationship between LBP and depressive symptoms was shown in a cross-lagged structural equation model (β = .15 and .17, p < .01). When lagged reciprocal paths at three- and six-week follow-up were tested, depressive symptoms at the time of consultation predicted higher LBP severity after three weeks (β = .23, p < .01). LBP after three weeks had in turn a positive cross-lagged effect on depression after six weeks (β = .27, p < .001). Conclusions: Reciprocal effects of depressive symptoms and LBP seem to depend on time under medical treatment. Health practitioners should screen for and treat depressive symptoms at the first consultation to improve the LBP treatment.
Resumo:
11β-Hydroxysteroid dehydrogenases (11beta-HSD) modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29) at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins) but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP) with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon.
Resumo:
BACKGROUND: Learning surgical skills in the operating room may be a challenge for medical students. Therefore, more approaches using simulation to enable students to develop their practical skills are required. OBJECTIVES: We hypothesized that (1) there would be a need for additional surgical training for medical students in the pre-final year, and (2) our basic surgery skills training program using fresh human skin would improve medical students' surgical skills. DESIGN: We conducted a preliminary survey of medical students to clarify the need for further training in basic surgery procedures. A new approach using simulation to teach surgical skills on human skin was set up. The procedural skills of 15 randomly selected students were assessed in the operating room before and after participation in the simulation, using Objective Structured Assessment of Technical Skills. Furthermore, subjective assessment was performed based on students' self-evaluation. The data were analyzed using SPSS, version 21 (SPSS, Inc., Chicago, IL). SETTING: The study took place at the Inselspital, Bern University Hospital. PARTICIPANTS: A total of 186 pre-final-year medical students were enrolled into the preliminary survey; 15 randomly selected medical students participated in the basic surgical skills training course on the fresh human skin operating room. RESULTS: The preliminary survey revealed the need for a surgical skills curriculum. The simulation approach we developed showed significant (p < 0.001) improvement for all 12 surgical skills, with mean cumulative precourse and postcourse values of 31.25 ± 5.013 and 45.38 ± 3.557, respectively. The self-evaluation contained positive feedback as well. CONCLUSION: Simulation of surgery using human tissue samples could help medical students become more proficient in handling surgical instruments before stepping into a real surgical situation. We suggest further studies evaluating our proposed teaching method and the possibility of integrating this simulation approach into the medical school curriculum.
Resumo:
Two-dimensional (2D) crystallisation of Membrane proteins reconstitutes them into their native environment, the lipid bilayer. Electron crystallography allows the structural analysis of these regular protein–lipid arrays up to atomic resolution. The crystal quality depends on the protein purity, ist stability and on the crystallisation conditions. The basics of 2D crystallisation and different recent advances are reviewed and electron crystallography approaches summarised. Progress in 2D crystallisation, sample preparation, image detectors and automation of the data acquisition and processing pipeline makes 2D electron crystallography particularly attractive for the structural analysis of membrane proteins that are too small for single-particle analyses and too unstable to form three-dimensional (3D) crystals.
Resumo:
Since the immunochemical identification of the bullous pemphigoid antigen 230 (BP230) as one of the major target autoantigens of bullous pemphigoid (BP) in 1981, our understanding of this protein has significantly increased. Cloning of its gene, development and characterization of animal models with engineered gene mutations or spontaneous mouse mutations have revealed an unexpected complexity of the gene encoding BP230. The latter, now called dystonin (DST), is composed of at least 100 exons and gives rise to three major isoforms, an epithelial, a neuronal and a muscular isoform, named BPAG1e (corresponding to the original BP230), BPAG1a and BPAG1b, respectively. The various BPAG1 isoforms play a key role in fundamental processes, such as cell adhesion, cytoskeleton organization, and cell migration. Genetic defects of BPAG1 isoforms are the culprits of epidermolysis bullosa and complex, devastating neurological diseases. In this review, we summarize recent advances of our knowledge about several BPAG1 isoforms, their role in various biological processes and in human diseases.