60 resultados para 3-d Particle Rotation
Resumo:
In order to defend themselves against arthropod herbivores, maize plants produce 1,4-benzoxazin-3-ones (BXs), which are stored as weakly active glucosides in the vacuole. Upon tissue disruption, BXs come into contact with β-glucosidases, resulting in the release of active aglycones and their breakdown products. While some aglycones can be reglucosylated by specialist herbivores, little is known about how they detoxify BX breakdown products. Here we report on the structure of an N-glucoside, 3-β-d-glucopyranosyl-6-methoxy-2-benzoxazolinone (MBOA-N-Glc), purified from Spodoptera frugiperda faeces. In vitro assays showed that MBOA-N-Glc is formed enzymatically in the insect gut using the BX breakdown product 6-methoxy-2-benzoxazolinone (MBOA) as precursor. While Spodoptera littoralis and S. frugiperda caterpillars readily glucosylated MBOA, larvae of the European corn borer Ostrinia nubilalis were hardly able to process the molecule. Accordingly, Spodoptera caterpillar growth was unaffected by the presence of MBOA, while O. nubilalis growth was reduced. We conclude that glucosylation of MBOA is an important detoxification mechanism that helps insects tolerate maize BXs.
Resumo:
GOAL: In the following, we will present a newly developed X-ray calibration phantom and its integration for 2-D/3-D pelvis reconstruction and subsequent automatic cup planning. Two different planning strategies were applied and evaluated with clinical data. METHODS: Two different cup planning methods were investigated: The first planning strategy is based on a combined pelvis and cup statistical atlas. Thereby, the pelvis part of the combined atlas is matched to the reconstructed pelvis model, resulting in an optimized cup planning. The second planning strategy analyzes the morphology of the reconstructed pelvis model to determine the best fitting cup implant. RESULTS: The first planning strategy was compared to 3-D CT-based planning. Digitally reconstructed radiographs of THA patients with differently severe pathologies were used to evaluate the accuracy of predicting the cup size and position. Within a discrepancy of one cup size, the size was correctly identified in 100% of the cases for Crowe type I datasets and in 77.8% of the cases for Crowe type II, III, and IV datasets. The second planning strategy was analyzed with respect to the eventually implanted cup size. In seven patients, the estimated cup diameter was correct within one cup size, while the estimation for the remaining five patients differed by two cup sizes. CONCLUSION: While both planning strategies showed the same prediction rate with a discrepancy of one cup size (87.5%), the prediction of the exact cup size was increased for the statistical atlas-based strategy (56%) in contrast to the anatomically driven approach (37.5%). SIGNIFICANCE: The proposed approach demonstrated the clinical validity of using 2-D/3-D reconstruction technique for cup planning.
Resumo:
Background Allergen-containing subpollen particles (SPP) are released from whole plant pollen upon contact with water or even high humidity. Because of their size SPP can preferentially reach the lower airways where they come into contact with surfactant protein (SP)-D. The aim of the present study was to investigate the influence of SP-D in a complex three-dimensional human epithelial airway model, which simulates the most important barrier functions of the epithelial airway. The uptake of SPP as well as the secretion of pro-inflammatory cytokines was investigated. Methods SPP were isolated from timothy grass and subsequently fluorescently labeled. A human epithelial airway model was built by using human Type II-pneumocyte like cells (A549 cells), human monocyte derived macrophages as well as human monocyte derived dendritic cells. The epithelial cell model was incubated with SPP in the presence and absence of surfactant protein D. Particle uptake was evaluated by confocal microscopy and advanced computer-controlled analysis. Finally, human primary CD4+ T-Cells were added to the epithelial airway model and soluble mediators were measured by enzyme linked immunosorbent assay or bead array. Results SPP were taken up by epithelial cells, macrophages, and dendritic cells. This uptake coincided with secretion of pro-inflammatory cytokines and chemokines. SP-D modulated the uptake of SPP in a cell type specific way (e.g. increased number of macrophages and epithelial cells, which participated in allergen particle uptake) and led to a decreased secretion of pro-inflammatory cytokines. Conclusion These results display a possible mechanism of how SP-D can modulate the inflammatory response to inhaled allergen.
Resumo:
The range of motion of normal hips and hips with femoroacetabular impingement relative to some specific anatomic reference landmarks is unknown. We therefore described: (1) the range of motion pattern relative to landmarks; (2) the location of the impingement zones in normal and impinging hips; and (3) the influence of surgical débridement on the range of motion. We used a previously developed and validated noninvasive 3-D CT-based method for kinematic hip analysis to compare the range of motion pattern, the location of impingement, and the effect of virtual surgical reconstruction in 28 hips with anterior femoroacetabular impingement and a control group of 33 normal hips. Hips with femoroacetabular impingement had decreased flexion, internal rotation, and abduction. Internal rotation decreased with increasing flexion and adduction. The calculated impingement zones were localized in the anterosuperior quadrant of the acetabulum and were similar in the two groups and in impingement subgroups. The average improvement of internal rotation was 5.4 degrees for pincer hips, 8.5 degrees for cam hips, and 15.7 degrees for mixed impingement. This method helps the surgeon quantify the severity of impingement and choose the appropriate treatment option; it provides a basis for future image-guided surgical reconstruction in femoroacetabular impingement with less invasive techniques.
Resumo:
Aims: Angiographic ectasias and aneurysms in stented segments have been associated with late stent thrombosis. Using optical coherence tomography (OCT), some stented segments show coronary evaginations reminiscent of ectasias. The purpose of this study was to explore, using computational fluid-dynamic (CFD) simulations, whether OCT-detected coronary evaginations can induce local changes in blood flow. Methods and results: OCT-detected evaginations are defined as outward bulges in the luminal vessel contour between struts, with the depth of the bulge exceeding the actual strut thickness. Evaginations can be characterised cross ectionally by depth and along the stented segment by total length. Assuming an ellipsoid shape, we modelled 3-D evaginations with different sizes by varying the depth from 0.2-1.0 mm, and the length from 1-9 mm. For the flow simulation we used average flow velocity data from non-diseased coronary arteries. The change in flow with varying evagination sizes was assessed using a particle tracing test where the particle transit time within the segment with evagination was compared with that of a control vessel. The presence of the evagination caused a delayed particle transit time which increased with the evagination size. The change in flow consisted locally of recirculation within the evagination, as well as flow deceleration due to a larger lumen - seen as a deflection of flow towards the evagination. Conclusions: CFD simulation of 3-D evaginations and blood flow suggests that evaginations affect flow locally, with a flow disturbance that increases with increasing evagination size.
Resumo:
We present 3-D simulations of impacts into Asteroid 21 Lutetia, the subject of a fly-by by the European Space Agency's Rosetta mission to Comet 67P/Churyumov-Gerasimenko. Using a 3-D shape model of the asteroid, impacts of sizes sufficient to reproduce the observed craters in Lutetia's North Polar Crater Cluster (NPCC) as observed by the OSIRIS experiment have been simulated using the Smoothed Particle Hydrodynamics technique. The asteroid itself has been modelled both as a homogeneous body and as a body with an iron core.
Resumo:
We present high resolution transmission spectra of giant planet atmospheres from a coupled 3-D atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9 to 55 day orbital periods around solar-type stars. The results of our 3-D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple 1-D models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blue shifts of up to 3 km s−1, whereas less irradiated planets show almost no net Doppler shifts. Compared to 1-D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3-D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1-D atmospheric models may be inadequate, as 3-D atmospheric motions can produce a noticeable effect on the absorption signatures.
Resumo:
Four different literature parameterizations for the formation and evolution of urban secondary organic aerosol (SOA) frequently used in 3-D models are evaluated using a 0-D box model representing the Los Angeles metropolitan region during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle- and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA that formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model–measurement comparisons for pre-2007 anthropogenic SOA modules in urban areas. Including SOA from primary semi-volatile and intermediate-volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model–measurement agreement for mass concentration. The results from the three parameterizations show large differences (e.g., a factor of 3 in SOA mass) and are not well constrained, underscoring the current uncertainties in this area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed SOA concentrations in Pasadena. All the recent parameterizations overpredict urban SOA formation at long photochemical ages (3 days) compared to observations from multiple sites, which can lead to problems in regional and especially global modeling. However, reducing IVOC emissions by one-half in the model to better match recent IVOC measurements improves SOA predictions at these long photochemical ages. Among the explicitly modeled VOCs, the precursor compounds that contribute the greatest SOA mass are methylbenzenes. Measured polycyclic aromatic hydrocarbons (naphthalenes) contribute 0.7% of the modeled SOA mass. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16–27, 35–61, and 19–35 %, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71(+-3) %. The relative contribution of each source is uncertain by almost a factor of 2 depending on the parameterization used. In-basin biogenic VOCs are predicted to contribute only a few percent to SOA. A regional SOA background of approximately 2.1 μgm-3 is also present due to the long-distance transport of highly aged OA, likely with a substantial contribution from regional biogenic SOA. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly cycles in OA concentrations (Bahreini et al., 2012; Hayes et al., 2013). However, the modeling work presented here suggests a strong anthropogenic source of modern carbon in SOA, due to cooking emissions, which was not accounted for in those previous studies and which is higher on weekends. Lastly, this work adapts a simple two-parameter model to predict SOA concentration and O/C from urban emissions. This model successfully predicts SOA concentration, and the optimal parameter combination is very similar to that found for Mexico City. This approach provides a computationally inexpensive method for predicting urban SOA in global and climate models. We estimate pollution SOA to account for 26 Tg yr-1 of SOA globally, or 17% of global SOA, one third of which is likely to be non-fossil.
Resumo:
This case presentation documents the treatment sequence of a 74 years old patient who complained about a sore spot of the palatal mucosa underneath the complete denture. The intraoral examination revealed a dark spot, redness and swelling of the mucosa around this spot and halitosis. The mucosa exhibited a perforation of 3 x 10 mm in diameter. A radiographic 3-D picture showed an impacted canine tooth, which was partly covered by the palatal bone. Firstly the denture base was relieved and the swelling gradually disappeared. Then a biopsy was taken for histological analysis to exclude any malignant process. In local anesthesia the tooth was extracted, which exhibited a deep carious lesion of the entire crown. After surgery a visible collapse of the jaw crest was observed. During a period of two months the denture was relined with a soft material to improve its fit and to enhance the healing process. With a final rebasement, the existing denture could be adapted again and the patient continued to wear it.
Resumo:
Image overlay projection is a form of augmented reality that allows surgeons to view underlying anatomical structures directly on the patient surface. It improves intuitiveness of computer-aided surgery by removing the need for sight diversion between the patient and a display screen and has been reported to assist in 3-D understanding of anatomical structures and the identification of target and critical structures. Challenges in the development of image overlay technologies for surgery remain in the projection setup. Calibration, patient registration, view direction, and projection obstruction remain unsolved limitations to image overlay techniques. In this paper, we propose a novel, portable, and handheld-navigated image overlay device based on miniature laser projection technology that allows images of 3-D patient-specific models to be projected directly onto the organ surface intraoperatively without the need for intrusive hardware around the surgical site. The device can be integrated into a navigation system, thereby exploiting existing patient registration and model generation solutions. The position of the device is tracked by the navigation system’s position sensor and used to project geometrically correct images from any position within the workspace of the navigation system. The projector was calibrated using modified camera calibration techniques and images for projection are rendered using a virtual camera defined by the projectors extrinsic parameters. Verification of the device’s projection accuracy concluded a mean projection error of 1.3 mm. Visibility testing of the projection performed on pig liver tissue found the device suitable for the display of anatomical structures on the organ surface. The feasibility of use within the surgical workflow was assessed during open liver surgery. We show that the device could be quickly and unobtrusively deployed within the sterile environment.
Resumo:
Extension of 3-D atmospheric data products back into the past is desirable for a wide range of applications. Historical upper-air data are important in this endeavour, particularly in the maritime regions of the tropics and the southern hemisphere, where observations are extremely sparse. Here we present newly digitized and re-evaluated early ship-based upper-air data from two cruises: (1) kite and registering balloon profiles from onboard the ship SMS Planet on a cruise from Europe around South Africa and across the Indian Ocean to the western Pacific in 1906/1907, and (2) ship-based radiosonde data from onboard the MS Schwabenland on a cruise from Europe across the Atlantic to Antarctica and back in 1938/1939. We describe the data and provide estimations of the errors. We compare the data with a recent reanalysis (the Twentieth Century Reanalysis Project, 20CR, Compo et al., 2011) that provides global 3-D data back to the 19th century based on an assimilation of surface pressure data only (plus monthly mean sea-surface temperatures). In cruise (1), the agreement is generally good, but large temperature differences appear during a period with a strong inversion. In cruise (2), after a subset of the data are corrected, close agreement between observations and 20CR is found for geopotential height (GPH) and temperature notwithstanding a likely cold bias of 20CR at the tropopause level. Results are considerably worse for relative humidity, which was reportedly inaccurately measured. Note that comparing 20CR, which has limited skill in the tropical regions, with measurements from ships in remote regions made under sometimes difficult conditions can be considered a worst case assessment. In view of that fact, the anomaly correlations for temperature of 0.3–0.6 in the lower troposphere in cruise (1) and of 0.5–0.7 for tropospheric temperature and GPH in cruise (2) are considered as promising results. Moreover, they are consistent with the error estimations. The results suggest room for further improvement of data products in remote regions.
Resumo:
In this study, we present middle atmospheric water vapor (H2O) and ozone (O3) measurements obtained by ground-based microwave radiometers at three European locations in Bern (47° N), Onsala (57° N) and Sodankylä (67° N) during Northern winter 2009/2010. In January 2010, a major sudden stratospheric warming (SSW) occurred in the Northern Hemisphere whose signatures are evident in the ground-based observations of H2O and O3. The observed anomalies in H2O and O3 are mostly explained by the relative location of the polar vortex with respect to the measurement locations. The SSW started on 26 January 2010 and was most pronounced by the end of January. The zonal mean temperature in the middle stratosphere (10 hPa) increased by approximately 25 Kelvin within a few days. The stratospheric vortex weakened during the SSW and shifted towards Europe. In the mesosphere, the vortex broke down, which lead to large scale mixing of polar and midlatitudinal air. After the warming, the polar vortex in the stratosphere split into two weaker vortices and in the mesosphere, a new, pole-centered vortex formed with maximum wind speed of 70 m s−1 at approximately 40° N. The shift of the stratospheric vortex towards Europe was observed in Bern as an increase in stratospheric H2O and a decrease in O3. The breakdown of the mesospheric vortex during the SSW was observed at Onsala and Sodankylä as a sudden increase in mesospheric H2O. The following large-scale descent inside the newly formed mesospheric vortex was well captured by the H2O observations in Sodankylä. In order to combine the H2O observations from the three different locations, we applied the trajectory mapping technique on our H2O observations to derive synoptic scale maps of the H2O distribution. Based on our observations and the 3-D wind field, this method allows determining the approximate development of the stratospheric and mesospheric polar vortex and demonstrates the potential of a network of ground-based instruments.
Resumo:
The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global 3-D ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.