25 resultados para 291601 Arithmetic and Logic Structures


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although slugs and snails play important roles in terrestrial ecosystems and cause considerable damage on a variety of crop plants, knowledge about the mechanisms of plant immunity to molluscs is limited. We found slugs to be natural herbivores of Arabidopsis thaliana and therefore investigated possible resistance mechanisms of this species against several molluscan herbivores. Treating wounded leaves with the mucus residue (‘slime trail’) of the Spanish slug Arion lusitanicus increased wound-induced jasmonate levels, suggesting the presence of defence elicitors in the mucus. Plants deficient in jasmonate biosynthesis and signalling suffered more damage by molluscan herbivores in the laboratory and in the field, demonstrating that JA-mediated defences protect A. thaliana against slugs and snails. Furthermore, experiments using A. thaliana mutants with altered levels of specific glucosinolate classes revealed the importance of aliphatic glucosinolates in defending leaves and reproductive structures against molluscs. The presence in mollusc faeces of known and novel metabolites arising from glutathione conjugation with glucosinolate hydrolysis products suggests that molluscan herbivores actively detoxify glucosinolates. Higher levels of aliphatic glucosinolates were found in plants during the night compared to the day, which correlated well with the nocturnal activity rhythms of slugs and snails. Our data highlight the function of well-known antiherbivore defence pathways in resistance against slugs and snails and suggest an important role for the diurnal regulation of defence metabolites against nocturnal molluscan herbivores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The precise arraying of functional entities in morphologically well-defined shapes remains one of the key challenges in the processing of organic molecules1. Among various π-conjugated species, pyrene exhibits a set of unique properties, which make it an attractive compound for the utilization in materials science2. In this contribution we report on properties of self-assembled structures prepared from amphiphilic pyrene trimers (Py3) consisting of phosphodiester-linked pyrenes. Depending on the geometry of a pyrene core substitution (1.6-, 1.8-, or 2.7- type, see Scheme), the thermally-controlled self-assembly allows the preparation of supramolecular architectures of different morphologies in a bottom-up approach: two-dimensional (2D) nanosheets3 are formed in case of 1.6- and 2.7-substitution4 whereas one-dimensional (1D) fibers are built from 1.8- substituted isomers. The morphologies of the assemblies are established by AFM and TEM, and the results are further correlated with spectroscopic and scattering data. Two-dimensional assemblies consist of an inner layer of hydrophobic pyrenes, sandwiched between a net of phosphates. Due to the repulsion of the negative charges, the 2D assemblies exist mostly as free-standing sheets. An internal alignment of pyrenes leads to strong exciton coupling with an unprecedented observation (simultaneous development of J- and H-bands from two different electronic transitions). Despite the similarity in spectroscopic properties, the structural parameters of the 2D aggregates drastically depend on the preparation procedure. Under certain conditions extra-large sheets (thickness of 2 nm, aspect ratio area/thickness ~107) in aqueous solution are formed4B. Finally, one-dimensional assemblies are formed as micrometer-long and nanometer-thick fibers. Both, planar and linear structures are intriguing objects for the creation of conductive nanowires that may find interest for applications in supramolecular electronics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The precise arraying of functional entities in morphologically well-defined shapes remains one of the key challenges in the processing of organic molecules1. Among various π-conjugated species, pyrene exhibits a set of unique properties, which make it an attractive compound for the utilization in materials science2. In this contribution we report on properties of self-assembled structures prepared from amphiphilic pyrene trimers (Py3) consisting of phosphodiester-linked pyrenes. Depending on the geometry of a pyrene core substitution (1.6-, 1.8-, or 2.7- type, see Scheme), the thermally-controlled self-assembly allows the preparation of supramolecular architectures of different morphologies in a bottom-up approach: two-dimensional (2D) nanosheets3 are formed in case of 1.6- and 2.7-substitution4 whereas one-dimensional (1D) fibers are built from 1.8- substituted isomers. The morphologies of the assemblies are established by AFM and TEM, and the results are further correlated with spectroscopic and scattering data. Two-dimensional assemblies consist of an inner layer of hydrophobic pyrenes, sandwiched between a net of phosphates. Due to the repulsion of the negative charges, the 2D assemblies exist mostly as free-standing sheets. An internal alignment of pyrenes leads to strong exciton coupling with an unprecedented observation (simultaneous development of J- and H-bands from two different electronic transitions). Despite the similarity in spectroscopic properties, the structural parameters of the 2D aggregates drastically depend on the preparation procedure. Under certain conditions extra-large sheets (thickness of 2 nm, aspect ratio area/thickness ~107) in aqueous solution are formed4B. Finally, one-dimensional assemblies are formed as micrometer-long and nanometer-thick fibers. Both, planar and linear structures are intriguing objects for the creation of conductive nanowires that may find interest for applications in supramolecular electronics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Femtosecond time-resolved Raman rotational coherence spectroscopy (RCS) is employed to determine accurate rotational, vibration–rotation coupling constants, and centrifugal distortion constants of cyclopentane (C⁵H¹⁰). Its lowest-frequency vibration is a pseudorotating ring deformation that interconverts 10 permutationally distinct but energetically degenerate “twist” minima interspersed by 10 “bent” conformers. While the individual twist and bent structures are polar asymmetric tops, the pseudorotation is fast on the time scale of external rotation, rendering cyclopentane a fluxionally nonpolar symmetric top molecule. The pseudorotational level pattern corresponds to a one-dimensional internal rotor with a pseudorotation constant Bps ≈ 2.8 cm⁻¹. The pseudorotational levels are significantly populated up to l = ± 13 at 298 K; <10% of the molecules are in the l = 0 level. The next-higher vibration is the “radial” ν²³ ring deformation mode at 273 cm⁻¹, which is far above the pseudorotational fundamental. Femtosecond Raman RCS measurements were performed in a gas cell at T = 293 K and in a pulsed supersonic jet at T ≈ 90 K. The jet cooling reduces the pseudorotational distribution to l < ±8 and eliminates the population of ν²³, allowing one to determine the rotational constant as A0 = B0 = 6484.930(11) MHz. This value is ∼300 times more precise than the previous value. The fit of the RCS transients reveals that the rotation–pseudorotation coupling constant αe,psB = −0.00070(1) MHz is diminutive, implying that excitation of the pseudorotation has virtually no effect on the B0 rotational constant of cyclopentane. The smallness of αe,psB can be realized when comparing to the vibration–rotation coupling constant of the ν²³ vibration, αe,23B = −9.547(1) MHz, which is about 10⁴ times larger.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS Transcatheter mitral valve replacement (TMVR) is an emerging technology with the potential to treat patients with severe mitral regurgitation at excessive risk for surgical mitral valve surgery. Multimodal imaging of the mitral valvular complex and surrounding structures will be an important component for patient selection for TMVR. Our aim was to describe and evaluate a systematic multi-slice computed tomography (MSCT) image analysis methodology that provides measurements relevant for transcatheter mitral valve replacement. METHODS AND RESULTS A systematic step-by-step measurement methodology is described for structures of the mitral valvular complex including: the mitral valve annulus, left ventricle, left atrium, papillary muscles and left ventricular outflow tract. To evaluate reproducibility, two observers applied this methodology to a retrospective series of 49 cardiac MSCT scans in patients with heart failure and significant mitral regurgitation. For each of 25 geometrical metrics, we evaluated inter-observer difference and intra-class correlation. The inter-observer difference was below 10% and the intra-class correlation was above 0.81 for measurements of critical importance in the sizing of TMVR devices: the mitral valve annulus diameters, area, perimeter, the inter-trigone distance, and the aorto-mitral angle. CONCLUSIONS MSCT can provide measurements that are important for patient selection and sizing of TMVR devices. These measurements have excellent inter-observer reproducibility in patients with functional mitral regurgitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: International and national sports federations as well as their member organisations (usually sports clubs) are key actors within the sports system and have a wide range of relationships outside the sports system (e.g. with the state, sponsors, and the media). They are currently facing major challenges such as growing competition in top-­‐level sports, democratisation of sports with “sports for all” and sports as the answer to social problems (integration, education, health, unemployment, etc.). In this context, professionalising sports organisations seems to be an appropriate strategy to face these challenges and solve current problems. This has led to a profound organisational change, particularly within sports federations, characterised by the strengthening of institutional management (managerialism) and the implementation of efficiency-­‐based management instruments and paid staff. In this context the questions arise how sports organisations professionalise and what consequences this may have. Theoretical framework: The goal of our presentation is to review the international literature and develop an appropriate concept of professionalisation in sport federations. Our multi-­‐level approach based on social theory of action integrates the current concepts and perspectives for analysing professionalisation in sports federations. We specify the framework for the following research perspectives: (1) forms, (2) causes and mechanisms, (3) consequences and (4) dynamics, and discuss the reciprocal relations between sports federations and their member organisations in this context. When analysing these different research perspectives, it is important to select or elaborate appropriate theoretical concepts to match the general multi-­‐level framework Discussion: The elaborated multi-­‐level framework for analysing professionalisation in sports federations is able to integrate most of the existing theoretical concepts and therefore, the broad range of endogenous as well as exogenous factors that might influence the professionalisation of sports organisations. Based on the theoretical framework, we can identify several consequences for the methodological design of studies intending to analyse the different perspectives of professionalisation in sports organisations: Data have to be collected on the different levels. Not only the forms of professionalisation and relevant structures of the organisations should be taken into account but also important characteristics of the environment (macro level) as well as members or member organisations, particularly key actors who might play a crucial role in gaining an understanding of professionalisation processes in sports organisations. In order to carry out a complex organisational research design, it seems necessary to focus on case studies – an approach that has become increasingly important in organisational research. Different strategies and methods of data collection have to be used within the case studies (e.g. interviews with experts within the organisations, questionnaire for selected people in the organisation, document analysis). Therefore, qualitative and quantitative research strategies have to be combined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synopsis: Sport organisations are facing multiple challenges originating from an increasingly complex and dynamic environment in general, and from internal changes in particular. Our study seeks to reveal and analyse the causes for professionalization processes in international sport federations, the forms resulting from it, as well as related consequences. Abstract: AIM OF ABSTRACT/PAPER - RESEARCH QUESTION Sport organisations are facing multiple challenges originating from an increasingly complex and dynamic environment in general, and from internal changes in particular. In this context, professionalization seems to have been adopted by sport organisations as an appropriate strategy to respond to pressures such as becoming more “business-like”. The ongoing study seeks to reveal and analyse the internal and external causes for professionalization processes in international sport federations, the forms resulting from it (e.g. organisational, managerial, economic) as well as related consequences on objectives, values, governance methods, performance management or again rationalisation. THEORETICAL BACKGROUND/LITERATURE REVIEW Studies on sport as specific non-profit sector mainly focus on the prospect of the “professionalization of individuals” (Thibault, Slack & Hinings, 1991), often within sport clubs (Thiel, Meier & Cachay, 2006) and national sport federations (Seippel, 2002) or on organisational change (Griginov & Sandanski, 2008; Slack & Hinings, 1987, 1992; Slack, 1985, 2001), thus leaving broader analysis on governance, management and professionalization in sport organisations an unaccomplished task. In order to further current research on above-mentioned topics, our intention is to analyse causes, forms and consequences of professionalisation processes in international sport federations. The social theory of action (Coleman, 1986; Esser, 1993) has been defined as appropriate theoretical framework, deriving in the following a multi-level framework for the analysis of sport organisations (Nagel, 2007). In light of the multi-level framework, sport federations are conceptualised as corporative actors whose objectives are defined and implemented with regard to the interests of member organisations (Heinemann, 2004) and/or other pressure groups. In order to understand social acting and social structures (Giddens 1984) of sport federations, two levels are in the focus of our analysis: the macro level examining the environment at large (political, social, economic systems etc.) and the meso level (Esser, 1999) examining organisational structures, actions and decisions of the federation’s headquarter as well as member organisations. METHODOLOGY, RESEARCH DESIGN AND DATA ANALYSIS The multi-level framework mentioned seeks to gather and analyse information on causes, forms and consequences of professionalization processes in sport federations. It is applied in a twofold approach: first an exploratory study based on nine semi-structured interviews with experts from umbrella sport organisations (IOC, WADA, ASOIF, AIOWF, etc.) as well as the analysis of related documents, relevant reports (IOC report 2000 on governance reform, Agenda 2020, etc.) and important moments of change in the Olympic Movement (Olympic revenue share, IOC evaluation criteria, etc.); and secondly several case studies. Whereas the exploratory study seeks more the causes for professionalization on an external, internal and headquarter level as depicted in the literature, the case studies rather focus on forms and consequences. Applying our conceptual framework, the analysis of forms is built around three dimensions: 1) Individuals (persons and positions), 2) Processes, structures (formalisation, specialisation), 3) Activities (strategic planning). With regard to consequences, we centre our attention on expectations of and relationships with stakeholders (e.g. cooperation with business partners), structure, culture and processes (e.g. governance models, performance), and expectations of and relationships with member organisations (e.g. centralisation vs. regionalisation). For the case studies, a mixed-method approach is applied to collect relevant data: questionnaires for rather quantitative data, interviews for rather qualitative data, as well as document and observatory analysis. RESULTS, DISCUSSION AND IMPLICATIONS/CONCLUSIONS With regard to causes of professionalization processes, we analyse the content of three different levels: 1. the external level, where the main pressure derives from financial resources (stakeholders, benefactors) and important turning points (scandals, media pressure, IOC requirements for Olympic sports); 2. the internal level, where pressure from member organisations turned out to be less decisive than assumed (little involvement of member organisations in decision-making); 3. the headquarter level, where specific economic models (World Cups, other international circuits, World Championships), and organisational structures (decision-making procedures, values, leadership) trigger or hinder a federation’s professionalization process. Based on our first analysis, an outline for an economic model is suggested, distinguishing four categories of IFs: “money-generating IFs” being rather based on commercialisation and strategic alliances; “classical Olympic IFs” being rather reactive and dependent on Olympic revenue; “classical non-Olympic IFs” being rather independent of the Olympic Movement; and “money-receiving IFs” being dependent on benefactors and having strong traditions and values. The results regarding forms and consequences will be outlined in the presentation. The first results from the two pilot studies will allow us to refine our conceptual framework for subsequent case studies, thus extending our data collection and developing fundamental conclusions. References: Bayle, E., & Robinson, L. (2007). A framework for understanding the performance of national governing bodies of sport. European Sport Management Quarterly, 7, 249–268 Chantelat, P. (2001). La professionnalisation des organisations sportives: Nouveaux débats, nouveaux enjeux [Professionalisation of sport organisations]. Paris: L’Harmattan. Dowling, M., Edwards, J., & Washington, M. (2014). Understanding the concept of professionalization in sport management research. Sport Management Review. Advance online publication. doi: 10.1016/j.smr.2014.02.003 Ferkins, L. & Shilbury, D. (2012). Good Boards Are Strategic: What Does That Mean for Sport Governance? Journal of Sport Management, 26, 67-80. Thibault, L., Slack, T., & Hinings, B. (1991). Professionalism, structures and systems: The impact of professional staff on voluntary sport organizations. International Review for the Sociology of Sport, 26, 83–97.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a complement to experimental and theoretical approaches, numerical modeling has become an important component to study asteroid collisions and impact processes. In the last decade, there have been significant advances in both computational resources and numerical methods. We discuss the present state-of-the-art numerical methods and material models used in "shock physics codes" to simulate impacts and collisions and give some examples of those codes. Finally, recent modeling studies are presented, focussing on the effects of various material properties and target structures on the outcome of a collision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present understanding of the initiation of boudinage and folding structures is based on viscosity contrasts and stress exponents, considering an intrinsically unstable state of the layer. The criterion of localization is believed to be prescribed by geometry-material interactions, which are often encountered in natural structures. An alternative localization phenomenon has been established for ductile materials, in which instability emerges for critical material parameters and loading rates from homogeneous conditions. In this thesis, conditions are sought under which this type of instability prevails and whether localization in geological materials necessarily requires a trigger by geometric imperfections. The relevance of critical deformation conditions, material parameters and the spatial configuration of instabilities are discussed in a geological context. In order to analyze boudinage geometries, a numerical eigenmode analysis is introduced. This method allows determining natural frequencies and wavelengths of a structure and inducing perturbations on these frequencies. In the subsequent coupled thermo-mechanical simulations, using a grain size evolution and end-member flow laws, localization emerges when material softening through grain size sensitive viscous creep sets in. Pinch-and-swell structures evolve along slip lines through a positive feedback between the matrix response and material bifurcations inside the layer, independent from the mesh-discretization length scale. Since boudinage and folding are considered to express the same general instability, both structures should arise independently of the sign of the loading conditions and for identical material parameters. To this end, the link between material to energy instabilities is approached by means of bifurcation analyses of the field equations and finite element simulations of the coupled system of equations. Boudinage and folding structures develop at the same critical energy threshold, where dissipative work by temperature-sensitive creep overcomes the diffusive capacity of the layer. This finding provides basis for a unified theory for strain localization in layered ductile materials. The numerical simulations are compared to natural pinch-and-swell microstructures, tracing the adaption of grain sizes, textures and creep mechanisms in calcite veins. The switch from dislocation to diffusion creep relates to strain-rate weakening, which is induced by dissipated heat from grain size reduction, and marks the onset of continuous necking. The time-dependent sequence uncovers multiple steady states at different time intervals. Microstructurally and mechanically stable conditions are finally expressed in the pinch-and-swell end members. The major outcome of this study is that boudinage and folding can be described as the same coupled energy-mechanical bifurcation, or as one critical energy attractor. This finding allows the derivation of critical deformation conditions and fundamental material parameters directly from localized structures in the field.