19 resultados para 1202
Resumo:
INTRODUCTION The Rondo is a single-unit cochlear implant (CI) audio processor comprising the identical components as its behind-the-ear predecessor, the Opus 2. An interchange of the Opus 2 with the Rondo leads to a shift of the microphone position toward the back of the head. This study aimed to investigate the influence of the Rondo wearing position on speech intelligibility in noise. METHODS Speech intelligibility in noise was measured in 4 spatial configurations with 12 experienced CI users using the German adaptive Oldenburg sentence test. A physical model and a numerical model were used to enable a comparison of the observations. RESULTS No statistically significant differences of the speech intelligibility were found in the situations in which the signal came from the front and the noise came from the frontal, ipsilateral, or contralateral side. The signal-to-noise ratio (SNR) was significantly better with the Opus 2 in the case with the noise presented from the back (4.4 dB, p < 0.001). The differences in the SNR were significantly worse with the Rondo processors placed further behind the ear than closer to the ear. CONCLUSION The study indicates that CI users with the receiver/stimulator implanted in positions further behind the ear are expected to have higher difficulties in noisy situations when wearing the single-unit audio processor.
Resumo:
OBJECTIVES To assess the hypothesis that there is excessive reporting of statistically significant studies published in prosthodontic and implantology journals, which could indicate selective publication. METHODS The last 30 issues of 9 journals in prosthodontics and implant dentistry were hand-searched for articles with statistical analyses. The percentages of significant and non-significant results were tabulated by parameter of interest. Univariable/multivariable logistic regression analyses were applied to identify possible predictors of reporting statistically significance findings. The results of this study were compared with similar studies in dentistry with random-effects meta-analyses. RESULTS From the 2323 included studies 71% of them reported statistically significant results, with the significant results ranging from 47% to 86%. Multivariable modeling identified that geographical area and involvement of statistician were predictors of statistically significant results. Compared to interventional studies, the odds that in vitro and observational studies would report statistically significant results was increased by 1.20 times (OR: 2.20, 95% CI: 1.66-2.92) and 0.35 times (OR: 1.35, 95% CI: 1.05-1.73), respectively. The probability of statistically significant results from randomized controlled trials was significantly lower compared to various study designs (difference: 30%, 95% CI: 11-49%). Likewise the probability of statistically significant results in prosthodontics and implant dentistry was lower compared to other dental specialties, but this result did not reach statistical significant (P>0.05). CONCLUSIONS The majority of studies identified in the fields of prosthodontics and implant dentistry presented statistically significant results. The same trend existed in publications of other specialties in dentistry.
Resumo:
The anterior superior alveolar nerve (ASAN) is a branch of the infraorbital nerve. Only few studies have morphometrically evaluated the course of the ASAN. Midfacial segments of ten hemisectioned fresh adult cadaver heads were dissected to uncover the anterior wall of the maxilla. Specimens were subsequently decalcified and the bone overlying the ASAN was removed under a microscope to expose the ASAN. Its branching pattern from the infraorbital nerve was recorded, and the course of the ASAN within the anterior wall of the maxillary sinus was morphometrically assessed measuring distances to predefined landmarks using a digital caliper. A distinct ASAN was observed in all specimens. It arose lateral (six cases) or inferior (four cases) from the infraorbital nerve. The point of origin was located at a mean distance of 12.2 ± 5.79 mm posterior to the infraorbital foramen. The ASAN was located on average 2.8 ± 5.13 mm lateral to the infraorbital foramen. After coursing medially, the ASAN ran inferior to the foramen at a mean distance of 5.5 ± 3.07 mm. When approaching the nasal aperture, the loop of the ASAN was on average 13.6 ± 3.07 mm above the nasal floor. The horizontal mean distance from the ASAN to the nasal aperture was 4.3 ± 2.74 mm halfway down from the loop, and 3.3 ± 2.60 mm at the floor of the nose, respectively. In conclusion, the present study evaluated the course of the ASAN relative to the infraorbital foramen and nasal aperture. This information is helpful to avoid damage to this anatomical structure during interventions in the infraobrital region of the maxilla. Further, knowledge of the course of the ASAN and of its bony correlate (canalis sinuosus) may be valuable in interpreting anesthetic or radiologic findings in the anterior maxilla.