31 resultados para 1 Sigma error
Resumo:
BACKGROUND: Physiological data obtained with the pulmonary artery catheter (PAC) are susceptible to errors in measurement and interpretation. Little attention has been paid to the relevance of errors in hemodynamic measurements performed in the intensive care unit (ICU). The aim of this study was to assess the errors related to the technical aspects (zeroing and reference level) and actual measurement (curve interpretation) of the pulmonary artery occlusion pressure (PAOP). METHODS: Forty-seven participants in a special ICU training program and 22 ICU nurses were tested without pre-announcement. All participants had previously been exposed to the clinical use of the method. The first task was to set up a pressure measurement system for PAC (zeroing and reference level) and the second to measure the PAOP. RESULTS: The median difference from the reference mid-axillary zero level was - 3 cm (-8 to + 9 cm) for physicians and -1 cm (-5 to + 1 cm) for nurses. The median difference from the reference PAOP was 0 mmHg (-3 to 5 mmHg) for physicians and 1 mmHg (-1 to 15 mmHg) for nurses. When PAOP values were adjusted for the differences from the reference transducer level, the median differences from the reference PAOP values were 2 mmHg (-6 to 9 mmHg) for physicians and 2 mmHg (-6 to 16 mmHg) for nurses. CONCLUSIONS: Measurement of the PAOP is susceptible to substantial error as a result of practical mistakes. Comparison of results between ICUs or practitioners is therefore not possible.
Resumo:
PURPOSE: To prospectively quantify in vitro the influence of gadopentetate dimeglumine and ioversol on the magnetic resonance (MR) imaging signal observed with a variety of musculoskeletal pulse sequences to predict optimum gadolinium concentrations for direct MR arthrography at 1.5 and 3.0 T. MATERIALS AND METHODS: In an in vitro study, T1 and T2 relaxation times of three dilution series of gadopentetate dimeglumine (concentration, 0-20.0 mmol gadolinium per liter) at ioversol concentrations with iodine concentration of 0, 236.4, and 1182 mmol iodine per liter (corresponding to 0, 30, and 150 mg of iodine per milliliter) were measured at 1.5 and 3.0 T. The relaxation rate dependence on concentrations of gadolinium and iodine was analytically modeled, and continuous profiles of signal versus gadolinium concentration were calculated for 10 pulse sequences used in current musculoskeletal imaging. After fitting to experimental discrete profiles, maximum signal-to-noise ratio (SNR), gadolinium concentration with maximum SNR, and range of gadolinium concentration with 90% of maximum SNR were derived. The overall influence of field strength and iodine concentration on these parameters was assessed by using t tests. The deviation of simulated from experimental signal-response profiles was assessed with the autocorrelation of the residuals. RESULTS: The model reproduced relaxation rates of 0.37-38.24 sec(-1), with a mean error of 4.5%. Calculated SNR profiles matched the discrete experimental profiles, with autocorrelation of the residuals divided by the mean of less than 5.0. Admixture of ioversol consistently reduced T1 and T2, narrowed optimum gadolinium concentration ranges (P = .004-.006), and reduced maximum SNR (P < .001 to not significant). Optimum gadolinium concentration was 0.7-3.4 mmol/L at both field strengths. At 3.0 T, maximum SNR was up to 75% higher than at 1.5 T. CONCLUSION: Admixture of ioversol to gadopentetate dimeglumine solutions results in a consistent additional relaxation enhancement, which can be analytically modeled to allow a near-quantitative a priori optimized match of contrast media concentrations and imaging protocol for a broad variety of pulse sequences.
Resumo:
QUESTION UNDER STUDY To establish at what stage Swiss hospitals are in implementing an internal standard concerning communication with patients and families after an error that resulted in harm. METHODS Hospitals were identified via the Swiss Hospital Association's website. An anonymous questionnaire was sent during September and October 2011 to 379 hospitals in German, French or Italian. Hospitals were asked to specify their hospital type and the implementation status of an internal hospital standard that decrees that patients or their relatives are to be promptly informed about medical errors that result in harm. RESULTS Responses from a total of 205 hospitals were received, a response rate of 54%. Most responding hospitals (62%) had an error disclosure standard or planned to implement one within 12 months. The majority of responding university and acute care (75%) hospitals had introduced a disclosure standard or were planning to do so. In contrast, the majority of responding psychiatric, rehabilitation and specialty (53%) clinics had not introduced a standard. CONCLUSION It appears that Swiss hospitals are in a promising state in providing institutional support for practitioners disclosing medical errors to patients. This has been shown internationally to be one important factor in encouraging the disclosure of medical errors. However, many hospitals, in particular psychiatric, rehabilitation and specialty clinics, have not implemented an error disclosure policy. Further research is needed to explore the underlying reasons.
Resumo:
If change over time is compared in several groups, it is important to take into account baseline values so that the comparison is carried out under the same preconditions. As the observed baseline measurements are distorted by measurement error, it may not be sufficient to include them as covariate. By fitting a longitudinal mixed-effects model to all data including the baseline observations and subsequently calculating the expected change conditional on the underlying baseline value, a solution to this problem has been provided recently so that groups with the same baseline characteristics can be compared. In this article, we present an extended approach where a broader set of models can be used. Specifically, it is possible to include any desired set of interactions between the time variable and the other covariates, and also, time-dependent covariates can be included. Additionally, we extend the method to adjust for baseline measurement error of other time-varying covariates. We apply the methodology to data from the Swiss HIV Cohort Study to address the question if a joint infection with HIV-1 and hepatitis C virus leads to a slower increase of CD4 lymphocyte counts over time after the start of antiretroviral therapy.
Resumo:
The chronological inconsistency in the first book of Matthew of Edessa's Chronicle is well-known. Some of his are dates accurate to the day, while others err by up to 50 years, with no immediately apparent pattern of error. In this talk I will examine some of these chronological puzzles, by untangling the five main themes that run through the book. By demonstrating how these chronological errors may have arisen, and why certain events in the chronicle are dated much more accurately than others, light may be shed on the sources and methodologies that Matthew used to compose his chronicle.
Resumo:
RATIONALE In biomedical journals authors sometimes use the standard error of the mean (SEM) for data description, which has been called inappropriate or incorrect. OBJECTIVE To assess the frequency of incorrect use of SEM in articles in three selected cardiovascular journals. METHODS AND RESULTS All original journal articles published in 2012 in Cardiovascular Research, Circulation: Heart Failure and Circulation Research were assessed by two assessors for inappropriate use of SEM when providing descriptive information of empirical data. We also assessed whether the authors state in the methods section that the SEM will be used for data description. Of 441 articles included in this survey, 64% (282 articles) contained at least one instance of incorrect use of the SEM, with two journals having a prevalence above 70% and "Circulation: Heart Failure" having the lowest value (27%). In 81% of articles with incorrect use of SEM, the authors had explicitly stated that they use the SEM for data description and in 89% SEM bars were also used instead of 95% confidence intervals. Basic science studies had a 7.4-fold higher level of inappropriate SEM use (74%) than clinical studies (10%). LIMITATIONS The selection of the three cardiovascular journals was based on a subjective initial impression of observing inappropriate SEM use. The observed results are not representative for all cardiovascular journals. CONCLUSION In three selected cardiovascular journals we found a high level of inappropriate SEM use and explicit methods statements to use it for data description, especially in basic science studies. To improve on this situation, these and other journals should provide clear instructions to authors on how to report descriptive information of empirical data.
Resumo:
We derive the fermion loop formulation for the supersymmetric nonlinear O(N) sigma model by performing a hopping expansion using Wilson fermions. In this formulation the fermionic contribution to the partition function becomes a sum over all possible closed non-oriented fermion loop configurations. The interaction between the bosonic and fermionic degrees of freedom is encoded in the constraints arising from the supersymmetry and induces flavour changing fermion loops. For N ≥ 3 this leads to fermion loops which are no longer self-avoiding and hence to a potential sign problem. Since we use Wilson fermions the bare mass needs to be tuned to the chiral point. For N = 2 we determine the critical point and present boson and fermion masses in the critical regime.
In the aftermath of medical error : Caring for patients, family, and the healthcare workers involved
Resumo:
Medical errors, in particular those resulting in harm, pose a serious situation for patients ("first victims") and the healthcare workers involved ("second victims") and can have long-lasting and distressing consequences. To prevent a second traumatization, appropriate and empathic interaction with all persons involved is essential besides error analysis. Patients share a nearly universal, broad preference for a complete disclosure of incidents, regardless of age, gender, or education. This includes the personal, timely and unambiguous disclosure of the adverse event, information relating to the event, its causes and consequences, and an apology and sincere expression of regret. While the majority of healthcare professionals generally support and honest and open disclosure of adverse events, they also face various barriers which impede the disclosure (e.g., fear of legal consequences). Despite its essential importance, disclosure of adverse events in practice occurs in ways that are rarely acceptable to patients and their families. The staff involved often experiences acute distress and an intense emotional response to the event, which may become chronic and increase the risk of depression, burnout and post-traumatic stress disorders. Communication with peers is vital for people to be able to cope constructively and protectively with harmful errors. Survey studies among healthcare workers show, however, that they often do not receive sufficient individual and institutional support. Healthcare organizations should prepare for medical errors and harmful events and implement a communication plan and a support system that covers the requirements and different needs of patients and the staff involved.
Resumo:
Approximate models (proxies) can be employed to reduce the computational costs of estimating uncertainty. The price to pay is that the approximations introduced by the proxy model can lead to a biased estimation. To avoid this problem and ensure a reliable uncertainty quantification, we propose to combine functional data analysis and machine learning to build error models that allow us to obtain an accurate prediction of the exact response without solving the exact model for all realizations. We build the relationship between proxy and exact model on a learning set of geostatistical realizations for which both exact and approximate solvers are run. Functional principal components analysis (FPCA) is used to investigate the variability in the two sets of curves and reduce the dimensionality of the problem while maximizing the retained information. Once obtained, the error model can be used to predict the exact response of any realization on the basis of the sole proxy response. This methodology is purpose-oriented as the error model is constructed directly for the quantity of interest, rather than for the state of the system. Also, the dimensionality reduction performed by FPCA allows a diagnostic of the quality of the error model to assess the informativeness of the learning set and the fidelity of the proxy to the exact model. The possibility of obtaining a prediction of the exact response for any newly generated realization suggests that the methodology can be effectively used beyond the context of uncertainty quantification, in particular for Bayesian inference and optimization.
Resumo:
Background: Individuals with type 1 diabetes (T1D) have to count the carbohydrates (CHOs) of their meal to estimate the prandial insulin dose needed to compensate for the meal’s effect on blood glucose levels. CHO counting is very challenging but also crucial, since an error of 20 grams can substantially impair postprandial control. Method: The GoCARB system is a smartphone application designed to support T1D patients with CHO counting of nonpacked foods. In a typical scenario, the user places a reference card next to the dish and acquires 2 images with his/her smartphone. From these images, the plate is detected and the different food items on the plate are automatically segmented and recognized, while their 3D shape is reconstructed. Finally, the food volumes are calculated and the CHO content is estimated by combining the previous results and using the USDA nutritional database. Results: To evaluate the proposed system, a set of 24 multi-food dishes was used. For each dish, 3 pairs of images were taken and for each pair, the system was applied 4 times. The mean absolute percentage error in CHO estimation was 10 ± 12%, which led to a mean absolute error of 6 ± 8 CHO grams for normal-sized dishes. Conclusion: The laboratory experiments demonstrated the feasibility of the GoCARB prototype system since the error was below the initial goal of 20 grams. However, further improvements and evaluation are needed prior launching a system able to meet the inter- and intracultural eating habits.
A functional approach to movement analysis and error identification in sports and physical education
Resumo:
Background: Diabetes mellitus is spreading throughout the world and diabetic individuals have been shown to often assess their food intake inaccurately; therefore, it is a matter of urgency to develop automated diet assessment tools. The recent availability of mobile phones with enhanced capabilities, together with the advances in computer vision, have permitted the development of image analysis apps for the automated assessment of meals. GoCARB is a mobile phone-based system designed to support individuals with type 1 diabetes during daily carbohydrate estimation. In a typical scenario, the user places a reference card next to the dish and acquires two images using a mobile phone. A series of computer vision modules detect the plate and automatically segment and recognize the different food items, while their 3D shape is reconstructed. Finally, the carbohydrate content is calculated by combining the volume of each food item with the nutritional information provided by the USDA Nutrient Database for Standard Reference. Objective: The main objective of this study is to assess the accuracy of the GoCARB prototype when used by individuals with type 1 diabetes and to compare it to their own performance in carbohydrate counting. In addition, the user experience and usability of the system is evaluated by questionnaires. Methods: The study was conducted at the Bern University Hospital, “Inselspital” (Bern, Switzerland) and involved 19 adult volunteers with type 1 diabetes, each participating once. Each study day, a total of six meals of broad diversity were taken from the hospital’s restaurant and presented to the participants. The food items were weighed on a standard balance and the true amount of carbohydrate was calculated from the USDA nutrient database. Participants were asked to count the carbohydrate content of each meal independently and then by using GoCARB. At the end of each session, a questionnaire was completed to assess the user’s experience with GoCARB. Results: The mean absolute error was 27.89 (SD 38.20) grams of carbohydrate for the estimation of participants, whereas the corresponding value for the GoCARB system was 12.28 (SD 9.56) grams of carbohydrate, which was a significantly better performance ( P=.001). In 75.4% (86/114) of the meals, the GoCARB automatic segmentation was successful and 85.1% (291/342) of individual food items were successfully recognized. Most participants found GoCARB easy to use. Conclusions: This study indicates that the system is able to estimate, on average, the carbohydrate content of meals with higher accuracy than individuals with type 1 diabetes can. The participants thought the app was useful and easy to use. GoCARB seems to be a well-accepted supportive mHealth tool for the assessment of served-on-a-plate meals.