62 resultados para 090108 Satellite Space Vehicle and Missile Design and Testing
Resumo:
Biomarkers are currently best used as mechanistic "signposts" rather than as "traffic lights" in the environmental risk assessment of endocrine-disrupting chemicals (EDCs). In field studies, biomarkers of exposure [e.g., vitellogenin (VTG) induction in male fish] are powerful tools for tracking single substances and mixtures of concern. Biomarkers also provide linkage between field and laboratory data, thereby playing an important role in directing the need for and design of fish chronic tests for EDCs. It is the adverse effect end points (e.g., altered development, growth, and/or reproduction) from such tests that are most valuable for calculating adverseNOEC (no observed effect concentration) or adverseEC10 (effective concentration for a 10% response) and subsequently deriving predicted no effect concentrations (PNECs). With current uncertainties, biomarkerNOEC or biomarkerEC10 data should not be used in isolation to derive PNECs. In the future, however, there may be scope to increasingly use biomarker data in environmental decision making, if plausible linkages can be made across levels of organization such that adverse outcomes might be envisaged relative to biomarker responses. For biomarkers to fulfil their potential, they should be mechanistically relevant and reproducible (as measured by interlaboratory comparisons of the same protocol). VTG is a good example of such a biomarker in that it provides an insight to the mode of action (estrogenicity) that is vital to fish reproductive health. Interlaboratory reproducibility data for VTG are also encouraging; recent comparisons (using the same immunoassay protocol) have provided coefficients of variation (CVs) of 38-55% (comparable to published CVs of 19-58% for fish survival and growth end points used in regulatory test guidelines). While concern over environmental xenoestrogens has led to the evaluation of reproductive biomarkers in fish, it must be remembered that many substances act via diverse mechanisms of action such that the environmental risk assessment for EDCs is a broad and complex issue. Also, biomarkers such as secondary sexual characteristics, gonadosomatic indices, plasma steroids, and gonadal histology have significant potential for guiding interspecies assessments of EDCs and designing fish chronic tests. To strengthen the utility of EDC biomarkers in fish, we need to establish a historical control database (also considering natural variability) to help differentiate between statistically detectable versus biologically significant responses. In conclusion, as research continues to develop a range of useful EDC biomarkers, environmental decision-making needs to move forward, and it is proposed that the "biomarkers as signposts" approach is a pragmatic way forward in the current risk assessment of EDCs.
Resumo:
To evaluate the impact of a national HIV voluntary counselling and testing (VCT) campaign on presentation to HIV care in a rural population in Tanzania.
Resumo:
The 5-HT3 receptor (5-HT3R) is an important ion channel responsible for the transmission of nerve impulses in the central nervous system.1 It is difficult to characterize transmembrane dynamic receptors with classical structural biology approaches like crystallization and x-ray. The use of photoaffinity probes is an alternative approach to identify regions in the protein that are important for the binding of small molecules. Therefore we synthesized a small library of photoaffinity probes by conjugating photophores via various linkers to granisetron which is a known antagonist of the 5-HT3R. We were able to obtain several compounds with diverse linker lengths and different photolabile moieties that show nanomolar binding affinities for the orthosteric binding site. Furthermore we established a stable h5-HT3R expressing cell line and a purification protocol to yield the receptor in a high purity. Currently we are investigating the photo crosslinking of these ligands with the 5-HT3R.
Resumo:
The 5-HT3 receptor (5-HT3R) is an important ion channel responsible for the transmission of nerve impulses in the central nervous system.[1] It is difficult to characterize transmembrane dynamic receptors with classical structural biology approaches like crystallization and x-ray. The use of photoaffinity probes is an alternative approach to identify regions in the protein that are important for the binding of small molecules. Therefore we synthesized a small library of photoaffinity probes by conjugating photolabile building blocks via various linkers to granisetron which is a known antagonist of the 5-HT3R. We were able to obtain several compounds with diverse linker lengths and different photo-labile moieties that show nanomolar binding affinities for the orthosteric binding site. Further on we developed a stable 5-HT3R overexpressing cell line and a purification method to yield the receptor in a high purity. Currently we are investigating crosslinking experiments and subsequent MS – analysis.
Resumo:
The 5-HT3 receptor (5-HT3R) is an important ion channel responsible for the transmission of nerve impulses in the central nervous system.1 It is difficult to characterize transmembrane dynamic receptors with classical structural biology approaches like crystallization and x-ray. The use of photoaffinity probes is an alternative approach to identify regions in the protein that are important for the binding of small molecules. Therefore we synthesized a small library of photoaffinity probes by conjugating photophores via various linkers to granisetron which is a known antagonist of the 5-HT3R. We were able to obtain several compounds with diverse linker lengths and different photolabile moieties that show nanomolar binding affinities for the orthosteric binding site. Furthermore we established a stable h5-HT3R expressing cell line and a purification protocol to yield the receptor in a high purity. Currently we are investigating the photo crosslinking of these ligands with the 5-HT3R.
Resumo:
The 5-HT3 receptor (5-HT3R) is an important ion channel responsible for the transmission of nerve impulses in the central nervous system.1 It is difficult to characterize transmembrane dynamic receptors with classical structural biology approaches like crystallization and x-ray. The use of photoaffinity probes is an alternative approach to identify regions in the protein that are important for the binding of small molecules. Therefore we synthesized a small library of photoaffinity probes by conjugating photophores via various linkers to granisetron which is a known antagonist of the 5-HT3R. We were able to obtain several compounds with diverse linker lengths and different photolabile moieties that show nanomolar binding affinities for the orthosteric binding site. Furthermore we established a stable h5-HT3R expressing cell line and a purification protocol to yield the receptor in a high purity. Currently we are investigating the photo crosslinking of these ligands with the 5-HT3R.
Resumo:
This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro- satellite platform. The results have been produced in the frame of ESA’s "As sessment Study for Space Based Space Surveillance Demonstration Mission (Phase A) " performed by the Airbus DS consortium. Space Surveillance and Tracking is part of Space Situational Awareness (SSA) and covers the detection, tracking and cataloguing of spa ce debris and satellites. Derived SST services comprise a catalogue of these man-made objects, collision warning, detection and characterisation of in-orbit fragmentations, sub-catalogue debris characterisation, etc. The assessment of SBSS in an SST system architecture has shown that both an operational SBSS and also already a well - designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond - LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing and fusion, etc.) until the final products can be offered to the users. The presented SBSS system concept takes the ESA SST System Requirements (derived within the ESA SSA Preparatory Program) into account and aims at fulfilling some of the SST core requirements in a stand-alone manner. The evaluation of the concept has shown that an according solution can be implemented with low technological effort and risk. The paper presents details of the system concept, candidate micro - satellite platforms, the observation strategy and the results of performance simulations for GEO coverage and cataloguing accuracy
Resumo:
Currently, observations of space debris are primarily performed with ground-based sensors. These sensors have a detection limit at some centimetres diameter for objects in Low Earth Orbit (LEO) and at about two decimetres diameter for objects in Geostationary Orbit (GEO). The few space-based debris observations stem mainly from in-situ measurements and from the analysis of returned spacecraft surfaces. Both provide information about mostly sub-millimetre-sized debris particles. As a consequence the population of centimetre- and millimetre-sized debris objects remains poorly understood. The development, validation and improvement of debris reference models drive the need for measurements covering the whole diameter range. In 2003 the European Space Agency (ESA) initiated a study entitled “Space-Based Optical Observation of Space Debris”. The first tasks of the study were to define user requirements and to develop an observation strategy for a space-based instrument capable of observing uncatalogued millimetre-sized debris objects. Only passive optical observations were considered, focussing on mission concepts for the LEO, and GEO regions respectively. Starting from the requirements and the observation strategy, an instrument system architecture and an associated operations concept have been elaborated. The instrument system architecture covers the telescope, camera and onboard processing electronics. The proposed telescope is a folded Schmidt design, characterised by a 20 cm aperture and a large field of view of 6°. The camera design is based on the use of either a frame-transfer charge coupled device (CCD), or on a cooled hybrid sensor with fast read-out. A four megapixel sensor is foreseen. For the onboard processing, a scalable architecture has been selected. Performance simulations have been executed for the system as designed, focussing on the orbit determination of observed debris particles, and on the analysis of the object detection algorithms. In this paper we present some of the main results of the study. A short overview of the user requirements and observation strategy is given. The architectural design of the instrument is discussed, and the main tradeoffs are outlined. An insight into the results of the performance simulations is provided.
Resumo:
Several methods based on Kriging have recently been proposed for calculating a probability of failure involving costly-to-evaluate functions. A closely related problem is to estimate the set of inputs leading to a response exceeding a given threshold. Now, estimating such a level set—and not solely its volume—and quantifying uncertainties on it are not straightforward. Here we use notions from random set theory to obtain an estimate of the level set, together with a quantification of estimation uncertainty. We give explicit formulae in the Gaussian process set-up and provide a consistency result. We then illustrate how space-filling versus adaptive design strategies may sequentially reduce level set estimation uncertainty.
Resumo:
From early colonial encounters to the ecological disasters of the twenty-first century, the performativity of contact has been a crucial element in the political significance of the beach. Conceptualising the beach as a creative trope and as a socio-cultural site, as well as an aesthetically productive topography, this collection examines its multiplicity of meanings and functions as a natural environment engendering both desire and fear in the human imagination from the Victorian period to the present. The contributors examine literature, film, and art, in addition to moments of encounter and environmental crisis, to highlight the beach as a social space inspiring particular codes of behaviour and specific discourses, as a geographical frontier between land and water, as an historical site of contact and conflict, and as a vacationscape promising regeneration and withdrawal from everyday life. The diversity of the beach is reflected in the geographical range, with essays on locales and texts from Britain, Ireland, the Caribbean, South Africa, the United States, Polynesia, and New Zealand. Focusing on the changed function of the beach as a result of processes of industrialisation and the rise of a modern leisure and health culture, this interdisciplinary volume theorises the beach as a demarcater of the precarious boundary between land and the sea, as well as between nature and culture.