37 resultados para amphibole olivine
Resumo:
[1] We present quantitative autumn, summer and annual precipitation and summer temperature reconstructions from proglacial annually laminated Lake Silvaplana, eastern Swiss Alps back to AD 1580. We used X-ray diffraction peak intensity ratios of minerals in the sediment layers (quartz qz, plagioclase pl, amphibole am, mica mi) that are diagnostic for different source areas and hydro-meteorological transport processes in the catchment. XRD data were calibrated with meteorological data (AD 1800/18641950) and revealed significant correlations: mi/pl with SON precipitation (r = 0.56, p < 0.05) and MJJAS precipitation (r = 0.66, p < 0.01); qz/mi with MJJAS temperature (r = 0.72, p < 0.01)and qz/am with annual precipitation (r = 0.54, p < 0.05). Geological catchment settings and hydro-meteorological processes provide deterministic explanations for the correlations. Our summer temperature reconstruction reproduces the typical features of past climate variability known from independent data sets. The precipitation reconstructions show a LIA climate moister than today. Exceptionally wet periods in our reconstruction coincide with regional glacier advances.
Resumo:
We investigated high temperature Mo isotope fractionation in a hydrous supra-subduction volcano-plutonic system (Kos, Aegean Arc, Greece) in order to address the debate on the 98/95Mo variability of the continental crust. In this igneous system, where differentiation is interpreted to be dominated by fractional crystallization, bulk rock data from olivine basalt to dacite show 98/95Mo ratios increasing from +0.3 to +0.6 along with Mo concentrations increasing from 0.8 to 4.1 g g1. Data for hornblende and biotite mineral separates reveal the extraction of light Mo into crystallizing silicates, with minimum partition coefficients between hornblende- silicate melt and biotite-silicate melt of 0.6 and 0.4 98/95Mo, respectively. Our data document significant Mo isotope fractionation at magmatic temperatures, hence, the igneous contribution to continental runoff is variable, besides probable source-related variability. Based on these results and published data an average continental 98/95Mo of +0.3 to +0.4 can be derived. This signature corresponds more closely to the average of published data of dissolved Mo loads of large rivers than previous estimates and is consistent with an upper limit of 98/95Mo = 0.4 of the Earth's upper crust as derived from the analysis of molybdenites.
Resumo:
Asteroid 4Vesta seems to be a major intact protoplanet, with a surface composition similar to that of the HED (howardite-eucrite-diogenite) meteorites. The southern hemisphere is dominated by a giant impact scar, but previous impact models have failed to reproduce the observed topography. The recent discovery that Vesta's southern hemisphere is dominated by two overlapping basins provides an opportunity to model Vesta's topography more accurately. Here we report three-dimensional simulations of Vesta's global evolution under two overlapping planet-scale collisions. We closely reproduce its observed shape, and provide maps of impact excavation and ejecta deposition. Spiral patterns observed in the younger basin Rheasilvia, about one billion years old, are attributed to Coriolis forces during crater collapse. Surface materials exposed in the north come from a depth of about 20kilometres, according to our models, whereas materials exposed inside the southern double-excavation come from depths of about 60-100kilometres. If Vesta began as a layered, completely differentiated protoplanet, then our model predicts large areas of pure diogenites and olivine-rich rocks. These are not seen, possibly implying that the outer 100kilometres or so of Vesta is composed mainly of a basaltic crust (eucrites) with ultramafic intrusions (diogenites).
Resumo:
In order to date any geological event, suitable mineral geochronometers that record that and only that event must be identified and analyzed. In the case of metasomatism, recrystallisation is a key process that controls both the petrology and the isotopic record of minerals. It can occur both in the form of complete neocrystallisation (e.g. in a vein) and in the form of pseudomorphism, whereby dissolution/reprecipitation at the submicroscopic scale plays a central role. Recrystallisation may be complete or not, raising the possibility that relicts of a pre-metasomatic assemblage may be preserved. Because recrystallisation is energetically less costly at almost any temperature than diffusion, and because radiogenic isotopes (except 4He) never diffuse faster than major elements forming the mineral structure, there is a strong causal link between petrographic relicts and isotopic inheritance (as demonstrated for zircon, monazite, titanite, amphibole, K-feldspar, biotite, and muscovite). Metasomatic assemblages commonly contain such mixtures between relicts and newly formed phases, whose geochronology is slightly more complex than that of simple, ideal systems, but can be managed by techniques that have become routine in the last decade and which are described in this chapter. Because of its crucial role in controlling the isotope systematics, the petrogenesis of a mineral needs to be understood in extreme detail, especially using microchemical analyses and micro-imaging techniques, before mineral ages can be correctly interpreted. As the occurrence of recrystallization is limited by the availability of water, minerals act as geohygrometers that allow constraints to be placed on the nature and age of fluid circulation episodes, especially metasomatic events.
Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites
Resumo:
Serpentine minerals in natural samples are dominated by lizardite and antigorite. In spite of numerous laboratory experiments, the stability fields of these species remain poorly constrained. This paper presents petrological observations and the Raman spectroscopy and XRD analyses of natural serpentinites from the Alpine paleo-accretionary wedge. Serpentine varieties were identified from a range of metamorphic pressure and temperature conditions from sub-greenschist (P < 4 kbar, T ~ 200300 C) to eclogite facies conditions (P > 20 kbar, T > 460 C) along a subduction geothermal gradient. We use the observed mineral assemblage in natural serpentinite along with the Tmax estimated by Raman spectroscopy of the carbonaceous matter in associated metasediments to constrain the temperature of the lizardite to antigorite transition at high pressures. We show that below 300 C, lizardite and locally chrysotile are the dominant species in the mesh texture. Between 320 and 390 C, lizardite is progressively replaced by antigorite at the grain boundaries through dissolutionprecipitation processes in the presence of SiO2 enriched fluids and in the cores of the lizardite mesh. Above 390 C, under high-grade blueschist to eclogite facies conditions, antigorite is the sole stable serpentine mineral until the onset of secondary olivine crystallization at 460 C.
Resumo:
The common appearance of hygroscopic brine (sweating) on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water-soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11-month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42, HCO3, Na+, and Cl, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl (from soil), SO42 (from meteoritic troilite and soil), and iron (meteoritic). Sweating meteorites mainly contain Mg2+ and Cl. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na-rich phase or loss of an efflorescent Na-salt. The total concentrations of water-soluble ions in bulk OCs ranges from 600 to 9000 g g1 (median 2500 g g1) as compared to 18714140 g g1 in soils (median 1148 g g1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water-soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca-sulfate contamination.
Resumo:
Context. To date, calculations of planet formation have mainly focused on dynamics, and only a few have considered the chemical composition of refractory elements and compounds in the planetary bodies. While many studies have been concentrating on the chemical composition of volatile compounds (such as H2O, CO, CO2) incorporated in planets, only a few have considered the refractory materials as well, although they are of great importance for the formation of rocky planets. Aims. We computed the abundance of refractory elements in planetary bodies formed in stellar systems with a solar chemical composition by combining models of chemical composition and planet formation. We also considered the formation of refractory organic compounds, which have been ignored in previous studies on this topic. Methods. We used the commercial software package HSC Chemistry to compute the condensation sequence and chemical composition of refractory minerals incorporated into planets. The problem of refractory organic material is approached with two distinct model calculations: the first considers that the fraction of atoms used in the formation of organic compounds is removed from the system (i.e., organic compounds are formed in the gas phase and are non-reactive); and the second assumes that organic compounds are formed by the reaction between different compounds that had previously condensed from the gas phase. Results. Results show that refractory material represents more than 50 wt% of the mass of solids accreted by the simulated planets with up to 30 wt% of the total mass composed of refractory organic compounds. Carbide and silicate abundances are consistent with C/O and Mg/Si elemental ratios of 0.5 and 1.02 for the Sun. Less than 1 wt% of carbides are present in the planets, and pyroxene and olivine are formed in similar quantities. The model predicts planets that are similar in composition to those of the solar system. Starting from a common initial nebula composition, it also shows that a wide variety of chemically different planets can form, which means that the differences in planetary compositions are due to differences in the planetary formation process. Conclusions. We show that a model in which refractory organic material is absent from the system is more compatible with observations. The use of a planet formation model is essential to form a wide diversity of planets in a consistent way.
Resumo:
Low viscosity domains such as localized shear zones exert an important control on the geodynamics of the uppermost mantle. Grain size reduction and subsequent strain localization related to a switch from dislocation to diffusion creep is one mechanism to form low viscosity domains. To sustain strain localization, the grain size of mantle minerals needs to be kept small over geological timescales. One way to keep olivine grain sizes small is by pinning of mobile grain boundaries during grain growth by other minerals (second phases). Detailed microstructural studies based on natural samples from three shear zones formed at different geodynamic settings, allowed the derivation of the olivine grain-size dependence on the second-phase content. The polymineralic olivine grain-size evolution with increasing strain is similar in the three shear zones. If the second phases are to pin the mobile olivine grain boundary the phases need to be well mixed before grain growth. We suggest that melt-rock and metamorphic reactions are crucial for the initial phase mixing in mantle rocks. With ongoing deformation and increasing strain, grain boundary sliding combined with mass transfer processes and nucleation of grains promotes phase mixing resulting in fine-grained polymineralic mixtures that deform by diffusion creep. Strain localization due to the presence of volumetrically minor minerals in polymineralic mantle rocks is only important at high strain deformation (ultramylonites) at low temperatures (<~800C). At smaller strain and stress conditions and/or higher temperatures other parameters like overall energy available to deform a given rock volume, the inheritance of mechanical anisotropies or the presence of water or melts needs to be considered to explain strain localization in the upper mantle.
Resumo:
The phase assemblages and compositions in a K-bearing lherzolite + H2O system are determined between 4 and 6 GPa and 8501200 C, and the melting reactions occurring at subarc depth in subduction zones are constrained. Experiments were performed on a rocking multi-anvil apparatus. The experiments had around 16 wt% water content, and hydrous melt or aqueous fluid was segregated and trapped in a diamond aggregate layer. The compositions of the aqueous fluid and hydrous melt phases were measured using the cryogenic LA-ICP-MS technique. The residual lherzolite consists of olivine, orthopyroxene, clinopyroxene, and garnet, while diamond (C) is assumed to be inert. Hydrous and alkali-rich minerals were absent from the run products due to preferred dissolution of K2O (and Na2O) to the aqueous fluid/hydrous melt phases. The role of phlogopite in melting relations is, thus, controlled by the water content in the system: at the water content of around 16 wt% used here, phlogopite is unstable and thus does not participate in melting reactions. The water-saturated solidus, i.e., the first appearance of hydrous melt in the Klherzolite composition, is located between 900 and 1000 C at 4 GPa and between 1000 and 1100 C at 5 and 6 GPa. Compositional jumps between hydrous melt and aqueous fluid at the solidus include a significant increase in the total dissolved solids load. All melts/fluids are peralkaline and calcium-rich. The melting reactions at the solidus are peritectic, as olivine, clinopyroxene, garnet, and H2O are consumed to generate hydrous melt plus orthopyroxene. Our fluid/melt compositional data demonstrate that the water-saturated hybrid peridotite solidus lies above 1000 C at depths greater than 150 km and that the second critical endpoint is not reached at 6 GPa for a K2ONa2OCaOFeOMgOAl2O3SiO2H2OCr2O3(TiO2) peridotite composition.
Resumo:
XMapTools is a MATLAB-based graphical user interface program for electron microprobe X-ray image processing, which can be used to estimate the pressuretemperature conditions of crystallization of minerals in metamorphic rocks. This program (available online at http://www.xmaptools.com) provides a method to standardize raw electron microprobe data and includes functions to calculate the oxide weight percent compositions for various minerals. A set of external functions is provided to calculate structural formulae from the standardized analyses as well as to estimate pressuretemperature conditions of crystallization, using empirical and semi-empirical thermobarometers from the literature. Two graphical user interface modules, Chem2D and Triplot3D, are used to plot mineral compositions into binary and ternary diagrams. As an example, the software is used to study a high-pressure Himalayan eclogite sample from the Stak massif in Pakistan. The high-pressure paragenesis consisting of omphacite and garnet has been retrogressed to a symplectitic assemblage of amphibole, plagioclase and clinopyroxene. Mineral compositions corresponding to ~165,000 analyses yield estimates for the eclogitic pressuretemperature retrograde path from 25 kbar to 9 kbar. Corresponding pressuretemperature maps were plotted and used to interpret the link between the equilibrium conditions of crystallization and the symplectitic microstructures. This example illustrates the usefulness of XMapTools for studying variations of the chemical composition of minerals and for retrieving information on metamorphic conditions on a microscale, towards computation of continuous pressuretemperature-and relative time path in zoned metamorphic minerals not affected by post-crystallization diffusion.
Resumo:
Lithium abundances and isotope compositions are reported for a suite of martian meteorites that span the range of petrological and geochemical types recognized to date for Mars. Samples include twenty-one bulk-rock enriched, intermediate and depleted shergottites, six nakhlites, two chassignites, the orthopyroxenite Allan Hills (ALH) 84001 and the polymict breccia Northwest Africa (NWA) 7034. Shergottites unaffected by terrestrial weathering exhibit a range in 7Li from 2.1 to 6.2, similar to that reported for pristine terrestrial peridotites and unaltered mid-ocean ridge and ocean island basalts. Two chassignites have 7Li values (4.0) intermediate to the shergottite range, and combined, these meteorites provide the most robust current constraints on 7Li of the martian mantle. The polymict breccia NWA 7034 has the lowest 7Li (0.2) of all terrestrially unaltered martian meteorites measured to date and may represent an isotopically light surface end-member. The new data for NWA 7034 imply that martian crustal surface materials had both a lighter Li isotope composition and elevated Li abundance compared with their associated mantle. These findings are supported by Li data for olivine-phyric shergotitte NWA 1068, a black glass phase isolated from the Tissint meteorite fall, and some nakhlites, which all show evidence for assimilation of a low-7Li crustal component. The range in 7Li for nakhlites (1.8 to 5.2), and co-variations with chlorine abundance, suggests crustal contamination by Cl-rich brines. The differences in Li isotope composition and abundance between the martian mantle and estimated crust are not as large as the fractionations observed for terrestrial continental crust and mantle, suggesting a difference in the styles of alteration and weathering between water-dominated processes on Earth versus possibly ClS-rich brines on Mars. Using high-MgO shergottites (>15 wt.% MgO) it is possible to estimate the 7Li of Bulk Silicate Mars (BSM) to be 4.2 0.9 (2). This value is at the higher end of estimates for the Bulk Silicate Earth (BSE; 3.5 1.0, 2), but overlaps within uncertainty.
Resumo:
The asteroid 4 Vesta was recently found to have two large impact craters near its south pole, exposing subsurface material. Modelling suggested that surface material in the northern hemisphere of Vesta came from a depth of about 20 kilometres, whereas the exposed southern material comes from a depth of 60 to 100 kilometres. Large amounts of olivine from the mantle were not seen, suggesting that the outer 100 kilometres or so is mainly igneous crust. Here we analyse the data on Vesta and conclude that the crustmantle boundary (or Moho) is deeper than 80 kilometres.
Resumo:
Serpentinites release at sub-arc depths volatiles and several fluid-mobile trace elements found in arc magmas. Constraining element uptake in these rocks and defining the trace element composition of fluids released upon serpentinite dehydration can improve our understanding of mass transfer across subduction zones and to volcanic arcs. The eclogite-facies garnet metaperidotite and chlorite harzburgite bodies embedded in paragneiss of the subduction melange from Cima di Gagnone derive from serpentinized peridotite protoliths and are unique examples of ultramafic rocks that experienced subduction metasomatism and devolatilization. In these rocks, metamorphic olivine and garnet trap polyphase inclusions representing the fluid released during high-pressure breakdown of antigorite and chlorite. Combining major element mapping and laser-ablation ICP-MS bulk inclusion analysis, we characterize the mineral content of polyphase inclusions and quantify the fluid composition. Silicates, Cl-bearing phases, sulphides, carbonates, and oxides document post-entrapment mineral growth in the inclusions starting immediately after fluid entrapment. Compositional data reveal the presence of two different fluid types. The first (type A) records a fluid prominently enriched in fluid-mobile elements, with Cl, Cs, Pb, As, Sb concentrations up to 10(3) PM (primitive mantle), similar to 10(2) PM Tit Ba, while Rb, B, Sr, Li, U concentrations are of the order of 10(1) PM, and alkalis are similar to 2 PM. The second fluid (type B) has considerably lower fluid-mobile element enrichments, but its enrichment patterns are comparable to type A fluid. Our data reveal multistage fluid uptake in these peridotite bodies, including selective element enrichment during seafloor alteration, followed by fluid-rock interaction along with subduction metamorphism in the plate interface melange. Here, infiltration of sediment-equilibrated fluid produced significant enrichment of the serpentinites in As, Sb, B, Pb, an enriched trace element pattern that was then transferred to the fluid released at greater depth upon serpentine dehydration (type A fluid). The type B fluid hosted by garnet may record the composition of the chlorite breakdown fluid released at even greater depth. The Gagnone study-case demonstrates that serpentinized peridotites acquire water and fluid-mobile elements during ocean floor hydration and through exchange with sediment-equilibrated fluids in the early subduction stages. Subsequent antigorite devolatilization at subarc depths delivers aqueous fluids to the mantle wedge that can be prominently enriched in sediment-derived components, potentially triggering arc magmatism without the need of concomitant dehydration/melting of metasediments or altered oceanic crust.
Resumo:
The surfaces of many objects in the Solar System comprise substantial quantities of water ice sometimes mixed with minerals and/or organic molecules. The sublimation of the ice changes the structural and optical properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surface analogues of cometary ices, made of water ice, complex organic matter (tholins) and silicates, as they undergo sublimation under low temperature (<-70C) and pressure (10-mbar) conditions inside the SCITEAS simulation chamber. As the water ice sublimated, we observed in situ the formation of a porous sublimation lag deposit, or sublimation mantle, at the top of the ice. This mantle is a network of filaments made of the non-volatile particles. Organics or phyllosilicates grains, able to interact via stronger inter-particulate forces than olivine grains, can form a foam-like structure having internal cohesiveness, holding olivine grains together. As this mantle builds-up, the band depths of the sub-surface water ice are attenuated until complete extinction under only few millimeters of mantle. Optically thick sublimation mantles are mainly featureless in the near infrared. The absorption bands of the minerals present in the mantle are weak, or even totally absent if minerals are mixed with organics which largely dominate the VISNIR reflectance spectrum. During sublimation, ejections of large fragments of mantle, triggered by the gas flow, expose ice particles to the surface. The contrast of brightness between mantled and ice-exposed areas depends on the wavelength range and the dust/ice ratio considered. We describe how the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the ice and the dust/ice mass ratio influence the texture, activity and spectro-photometric properties of the sublimation mantles. These data provide useful references for interpreting remote-sensing observations of comets and also icy satellites or trans-neptunian objects.
Resumo:
The 39Ar-40Ar technique is often used to date the metamorphic evolution of basement rocks. The present review article examines systematic aspects of the K-Ar decay system in different mineral chronometers frequently found in mono- and polymetamorphic basements (amphibole, biotite, muscovite/phengite, K-feldspar). A key observation is that the measured dissolution rate of silicates in aqueous fluids is many orders of magnitude faster, and has a much lower activation energy, than the rate of Fickian diffusion of Ar. The effects of this inequality are patchy age zonations, very much like those observed in many U-Pb chronometers, unaccompanied by intra-crystalline bellshaped Ar loss profiles. Recognizing the importance of the respective rate constants in field situations leads to re-evaluating the ages and the interpretive paradigms in classic examples such as the Central Alpine "Lepontine" amphibolite event and the Western Alpine eclogitic event.