44 resultados para > 4.5 chambers
Resumo:
PhIP carcinogenesis is initiated by N(2)-hydroxylation, mediated by several cytochromes P450, including CYP1A1. However, the role of CYP1A1 in PhIP metabolic activation in vivo is unclear. In this study, Cyp1a1-null and wild-type (WT) mice were used to investigate the potential role of CYP1A1 in PhIP metabolic activation in vivo. PhIP N(2)-hydroxylation was actively catalyzed by lung homogenates of WT mice, at a rate of 14.9 +/- 5.0 pmol/min/g tissue, but < 1 pmol/min/g tissue in stomach and small intestine, and almost undetectable in mammary gland and colon. PhIP N(2)-hydroxylation catalyzed by lung homogenates of Cyp1a1-null mice was approximately 10-fold lower than that of WT mice. In contrast, PhIP N(2)-hydroxylation activity in lung homogenates of Cyp1a2-null versus WT mice was not decreased. Pretreatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased lung Cyp1a1 mRNA and lung homogenate PhIP N(2)-hydroxylase activity approximately 50-fold in WT mice, where the activity was substantially inhibited (70%) by monoclonal antibodies against CYP1A1. In vivo, 30 min after oral treatment with PhIP, PhIP levels in lung were similar to those in liver. After a single dose of 0.1 mg/kg [(14)C]PhIP, lung PhIP-DNA adduct levels in Cyp1a1-null mice, but not in Cyp1a2-null mice, were significantly lower (P=0.0028) than in WT mice. These results reveal that mouse lung has basal and inducible PhIP N(2)-hydroxylase activity predominantly catalyzed by CYP1A1. Because of the high inducibility of human CYP1A1, especially in cigarette smokers, the role of lung CYP1A1 in PhIP carcinogenesis should be considered.
Resumo:
OBJECTIVE: To report clinical evaluation of the clamp rod internal fixator 4.5/5.5 (CRIF 4.5/5.5) in bovine long-bone fracture repair. STUDY DESIGN: Retrospective study. ANIMALS: Cattle (n=22) with long-bone fractures. METHODS: Records for cattle with long-bone fractures repaired between 1999 and 2004 with CRIF 4.5/5.5 were reviewed. Quality of fracture repair, fracture healing, and clinical outcome were investigated by means of clinical examination, medical records, radiographs, and telephone questionnaire. RESULTS: Successful long-term outcome was achieved in 18 cattle (82%); 4 were euthanatized 2-14 days postoperatively because of fracture breakdowns. Two cattle had movement of clamps on the rod. Moderate to severe callus formation was evident in 11 cattle 6 months postoperatively. CONCLUSIONS: Movement of clamps on the rod was recognized as implant failure unique to the CRIF. This occurred in cattle with poor fracture stability because of an extensive cortical defect. The CRIF system may not be ideal to treat metacarpal/metatarsal fractures because its voluminous size makes skin closure difficult, thereby increasing the risk of postoperative infections. CLINICAL RELEVANCE: CRIF cannot be recommended for repair of complicated long-bone fractures in cattle.
Resumo:
Nitric oxide (NO) mediates a variety of physiological functions in the central nervous system and acts as an important developmental regulator. Striatal interneurons expressing neuronal nitric oxide synthase (nNOS) have been described to be relatively spared from the progressive cell loss in Huntington's disease (HD). We have recently shown that creatine, which supports the phosphagen energy system, induces the differentiation of GABAergic cells in cultured striatal tissue. Moreover, neurotrophin-4/5 (NT-4/5) has been found to promote the survival and differentiation of cultured striatal neurons. In the present study, we assessed the effects of creatine and NT-4/5 on nNOS-immunoreactive (-ir) neurons of E14 rat ganglionic eminences grown for 1 week in culture. Chronic administration of creatine [5mM], NT-4/5 [10ng/ml], or a combination of both factors significantly increased numbers of nNOS-ir neurons. NT-4/5 exposure also robustly increased levels of nNOS protein. Interestingly, only NT-4/5 and combined treatment significantly increased general viability but no effects were seen for creatine supplementation alone. In addition, NT-4/5 and combined treatment resulted in a significant larger soma size and number of primary neurites of nNOS-ir neurons while creatine administration alone exerted no effects. Double-immunolabeling studies revealed that all nNOS-ir cells co-localized with GABA. In summary, our findings suggest that creatine and NT-4/5 affect differentiation and/or survival of striatal nNOS-ir GABAergic interneurons. These findings provide novel insights into the biology of developing striatal neurons and highlight the potential of both creatine and NT-4/5 as therapeutics for HD.
Resumo:
BACKGROUND: Human African trypanosomiasis (HAT), a major parasitic disease spread in Africa, urgently needs novel targets and new efficacious chemotherapeutic agents. Recently, we discovered that 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine (compound 1) exhibits specific antitrypanosomal activity with an IC(50) of 1.0 microM on Trypanosoma brucei rhodesiense (T. b. rhodesiense), the causative agent of the acute form of HAT. METHODOLOGY/PRINCIPAL FINDINGS: In this work we show adenosine kinase of T. b. rhodesiense (TbrAK), a key enzyme of the parasite purine salvage pathway which is vital for parasite survival, to be the putative intracellular target of compound 1 using a chemical proteomics approach. This finding was confirmed by RNA interference experiments showing that down-regulation of adenosine kinase counteracts compound 1 activity. Further chemical validation demonstrated that compound 1 interacts specifically and tightly with TbrAK with nanomolar affinity, and in vitro activity measurements showed that compound 1 is an enhancer of TbrAK activity. The subsequent kinetic analysis provided strong evidence that the observed hyperactivation of TbrAK is due to the abolishment of the intrinsic substrate-inhibition. CONCLUSIONS/SIGNIFICANCE: The results suggest that TbrAK is the putative target of this compound, and that hyperactivation of TbrAK may represent a novel therapeutic strategy for the development of trypanocides.
Resumo:
Bok is a member of the Bcl-2 protein family that controls intrinsic apoptosis. Bok is most closely related to the pro-apoptotic proteins Bak and Bax, but in contrast to Bak and Bax, very little is known about its cellular role. Here we report that Bok binds strongly and constitutively to inositol 1,4,5-trisphosphate receptors (IP3Rs), proteins that form tetrameric calcium channels in the endoplasmic reticulum (ER) membrane and govern the release of ER calcium stores. Bok binds most strongly to IP3R1 and IP3R2, and barely to IP3R3, and essentially all cellular Bok is IP3R bound in cells that express substantial amounts of IP3Rs. Binding to IP3Rs appears to be mediated by the putative BH4 domain of Bok and the docking site localizes to a small region within the coupling domain of IP3Rs (amino acids 1895–1903 of IP3R1) that is adjacent to numerous regulatory sites, including sites for proteolysis. With regard to the possible role of Bok-IP3R binding, the following was observed: (i) Bok does not appear to control the ability of IP3Rs to release ER calcium stores, (ii) Bok regulates IP3R expression, (iii) persistent activation of inositol 1,4,5-trisphosphate-dependent cell signaling causes Bok degradation by the ubiquitin-proteasome pathway, in a manner that parallels IP3R degradation, and (iv) Bok protects IP3Rs from proteolysis, either by chymotrypsin in vitro or by caspase-3 in vivo during apoptosis. Overall, these data show that Bok binds strongly and constitutively to IP3Rs and that the most significant consequence of this binding appears to be protection of IP3Rs from proteolysis. Thus, Bok may govern IP3R cleavage and activity during apoptosis.
Resumo:
cis,cis,cis,cis-[4.5.5.5]Fenestrane 11 was prepared by a novel route. The energy hypersurface of some stereoisomeric and substituted [4.5.5.5]fenestranes and -fenestrenes was explored by DFT calculations. The impact of some structural modifications, which enhance the planarizing deformation in the central C(C)4 substructures are discussed.
Resumo:
Two BDF-based organic sensitizers, as first examples for their use in dye-sensitized solar cells, are prepared and characterized. They yield promising power conversion efficiencies of up to 5.5 and high open circuit voltages up to 0.82 V. This work demonstrates that the BDF chromophore acts as an effective donor in organic sensitizers.
Resumo:
Three divalent transition metal complexes of 4,5-bis(2-pyridylmethylsulfanyl)-4‘,5‘-ethylenedithiotetrathiafulvalene have been prepared and crystallographically characterized. The isostructural Co(II) and the Ni(II) complexes show octahedral geometries around the metal ions with the coordination sites occupied by the pyridyl nitrogen atoms and the thioether sulfur atoms of the ligand and cis coordination of the halide ions. Cyclic voltammetry reveals that the complexation leads to a small anodic shift in the first oxidation potential of the TTF system.