23 resultados para % of sample area
Resumo:
We studied the influence of surveyed area size on density estimates by means of camera-trapping in a low-density felid population (1-2 individuals/100 km(2) ). We applied non-spatial capture-recapture (CR) and spatial CR (SCR) models for Eurasian lynx during winter 2005/2006 in the northwestern Swiss Alps by sampling an area divided into 5 nested plots ranging from 65 to 760 km(2) . CR model density estimates (95% CI) for models M0 and Mh decreased from 2.61 (1.55-3.68) and 3.6 (1.62-5.57) independent lynx/100 km(2) , respectively, in the smallest to 1.20 (1.04-1.35) and 1.26 (0.89-1.63) independent lynx/100 km(2) , respectively, in the largest area surveyed. SCR model density estimates also decreased with increasing sampling area but not significantly. High individual range overlaps in relatively small areas (the edge effect) is the most plausible reason for this positive bias in the CR models. Our results confirm that SCR models are much more robust to changes in trap array size than CR models, thus avoiding overestimation of density in smaller areas. However, when a study is concerned with monitoring population changes, large spatial efforts (area surveyed ≥760 km(2) ) are required to obtain reliable and precise density estimates with these population densities and recapture rates.
Resumo:
The behavior of sample components whose pI values are outside the pH gradient established by 101 hypothetical biprotic carrier ampholytes covering a pH 6-8 range was investigated by computer simulation under constant current conditions with concomitant constant electroosmosis toward the cathode. Data obtained with the sample being applied between zones of carrier ampholytes and on the anodic side of the carrier ampholytes were studied and found to evolve into zone structures comprising three regions between anolyte and catholyte. The focusing region with the pH gradient is bracketed by two isotachopheretic zone structures comprising selected sample and carrier components as isotachophoretic zones. The isotachophoretic structures electrophoretically migrate in opposite direction and their lengths increase with time due to the gradual isotachophoretic decay at the pH gradient edges. Due to electroosmosis, however, the overall pattern is being transported toward the cathode. Sample components whose pI values are outside the established pH gradient are demonstrated to form isotachophoretic zones behind the leading cation of the catholyte (components with pI values larger than 8) and the leading anion of the anolyte (components with pI values smaller than 6). Amphoteric compounds with appropriate pI values or nonamphoteric components can act as isotachophoretic spacer compounds between sample compounds or between the leader and the sample with the highest mobility. The simulation data obtained provide for the first time insight into the dynamics of amphoteric sample components that do not focus within the established pH gradient.
Resumo:
Dating lake sediments by accelerator mass spectrometry (AMS) 14C analysis of terrestrial plant macrofossils overcomes one of the main problems associated with dating bulk sediment samples, i.e., the presence of old organic matter. Even so, many AMS dates from arctic and boreal sites appear to misrepresent the age of the sediment. To understand the nature of these apparent dating anomalies better, we conducted a series of 14C dating experiments using samples from Alaskan and Siberian lake-sediment cores. First, to test whether our analytical procedures introduced a sample-mass bias, we obtained 14C dates for different-sized pieces of single woody macrofossils. In these sample-mass experiments, statistically equivalent ages were found for samples as small as 0.05 mg C. Secondly, to assess whether macrofossil type influenced dating results, we conducted sample-type experiments in which 14C dates were obtained for different macrofossil types sieved from the same depth in the sediment. We dated materials from multiple levels in sediment cores from Upper Capsule Lake (North Slope, northern Alaska) and Grizzly Lake (Copper River Basin, southern Alaska) and from single depths in other records from northern Alaska. In several of the experiments there were significant discrepancies between dates for different plant tissues, and in most cases wood and charcoal were older than other macrofossil types, usually by several hundred years. This pattern suggests that 14C dates for woody macrofossils may misrepresent the age of the sediment by centuries, perhaps because of their longer terrestrial residence time and the potential in-built age of longlived plants. This study identifies why some 14C dates appear to be inconsistent with the overall age-depth trend of a lake-sediment record, and it may guide the selection of 14C samples in future studies.
Resumo:
An accurate and efficient determination of the highly toxic Cr(VI) in solid materials is important to determine the total Cr(VI) inventory of contaminated sites and the Cr(VI) release potential from such sites into the environment. Most commonly, total Cr(VI) is extracted from solid materials following a hot alkaline extraction procedure (US EPA method 3060A) where a complete release of water-extractable and sparingly soluble Cr(VI) phase is achieved. This work presents an evaluation of matrix effects that may occur during the hot alkaline extraction and in the determination of the total Cr(VI) inventory of variably composed contaminated soils and industrial materials (cement, fly ash) and is compared to water-extractable Cr(VI) results. Method validation including multiple extractions and matrix spiking along with chemical and mineralogical characterization showed satisfying results for total Cr(VI) contents for most of the tested materials. However, unreliable results were obtained by applying method 3060A to anoxic soils due to the degradation of organic material and/or reactions with Fe2+-bearing mineral phases. In addition, in certain samples discrepant spike recoveries have to be also attributed to sample heterogeneity. Separation of possible extracted Cr(III) by applying cation-exchange cartridges prior to solution analysis further shows that under the hot alkaline extraction conditions only Cr(VI) is present in solution in measurable amounts, whereas Cr(III) gets precipitated as amorphous Cr(OH)3(am). It is concluded that prior to routine application of method 3060A to a new material type, spiking tests are recommended for the identification of matrix effects. In addition, the mass of extracted solid material should to be well adjusted to the heterogeneity of the Cr(VI) distribution in the material in question.
Resumo:
In this work, electrophoretic preconcentration of protein and peptide samples in microchannels was studied theoretically using the 1D dynamic simulator GENTRANS, and experimentally combined with MS. In all configurations studied, the sample was uniformly distributed throughout the channel before power application, and driving electrodes were used as microchannel ends. In the first part, previously obtained experimental results from carrier-free systems are compared to simulation results, and the effects of atmospheric carbon dioxide and impurities in the sample solution are examined. Simulation provided insight into the dynamics of the transport of all components under the applied electric field and revealed the formation of a pure water zone in the channel center. In the second part, the use of an IEF procedure with simple well defined amphoteric carrier components, i.e. amino acids, for concentration and fractionation of peptides was investigated. By performing simulations a qualitative description of the analyte behavior in this system was obtained. Neurotensin and [Glu1]-Fibrinopeptide B were separated by IEF in microchannels featuring a liquid lid for simple sample handling and placement of the driving electrodes. Component distributions in the channel were detected using MALDI- and nano-ESI-MS and data were in agreement with those obtained by simulation. Dynamic simulations are demonstrated to represent an effective tool to investigate the electrophoretic behavior of all components in the microchannel.
Resumo:
OBJECTIVES: To determine sample sizes in studies on diagnostic accuracy and the proportion of studies that report calculations of sample size. DESIGN: Literature survey. DATA SOURCES: All issues of eight leading journals published in 2002. METHODS: Sample sizes, number of subgroup analyses, and how often studies reported calculations of sample size were extracted. RESULTS: 43 of 8999 articles were non-screening studies on diagnostic accuracy. The median sample size was 118 (interquartile range 71-350) and the median prevalence of the target condition was 43% (27-61%). The median number of patients with the target condition--needed to calculate a test's sensitivity--was 49 (28-91). The median number of patients without the target condition--needed to determine a test's specificity--was 76 (27-209). Two of the 43 studies (5%) reported a priori calculations of sample size. Twenty articles (47%) reported results for patient subgroups. The number of subgroups ranged from two to 19 (median four). No studies reported that sample size was calculated on the basis of preplanned analyses of subgroups. CONCLUSION: Few studies on diagnostic accuracy report considerations of sample size. The number of participants in most studies on diagnostic accuracy is probably too small to analyse variability of measures of accuracy across patient subgroups.
Resumo:
In order to determine the extent and timing of dyke formation in the Ladakh Batholith we examined about 30 mostly andesitic dykes intruding the Ladakh batholith in a ca. 50 km wide area to the west of Leh (NW India). The dykes in the east of the area trend E-NE and those in the west trend N-NW. The difference in orientation is also evident in the petrography and isotopic signatures. The eastern dykes contain corroded quartz xenocrysts and show negative ε0(Nd) and positive ε0(Sr) values, where as the western dykes do not contain quartz xenocrysts and exhibit positive ε0(Nd) and near-zero ε0(Sr) values. The variability in Sr-Nd isotopes (ε0(Nd) = 3.6 to −9.6, ε0(Sr) = 0.4 to 143) and the quartz xenocrysts can best be explained by (differing degrees of) crustal assimilation of the parent magma of the dykes. Separated minerals from five dykes were dated by 40Ar-39Ar incremental heating: amphibole ages range between 50 and 54 Ma, and one biotite dated both by Rb-Sr and by 40Ar-39Ar gave an age of 45 Ma. One dated pseudotachylyte sample attests to brittle faulting at ca. 54 Ma. The combination of structural field evidence with petrographic, isotopic and geochronological analyses demonstrates that the dykes did not form from a single, progressively differentiating magma chamber, despite having formed in the same tectonic setting around the same time, and that processes such as crustal assimilation and magma mixing/mingling also played a significant role in magma petrogenesis.