277 resultados para severe drought
Resumo:
Abstract We explored the feasibility of unrelated donor haematopoietic stem cell transplant (HSCT) upfront without prior immunosuppressive therapy (IST) in paediatric idiopathic severe aplastic anaemia (SAA). This cohort was then compared to matched historical controls who had undergone first-line therapy with a matched sibling/family donor (MSD) HSCT (n = 87) or IST with horse antithymocyte globulin and ciclosporin (n = 58) or second-line therapy with unrelated donor HSCT post-failed IST (n = 24). The 2-year overall survival in the upfront cohort was 96 ± 4% compared to 91 ± 3% in the MSD controls (P = 0·30) and 94 ± 3% in the IST controls (P = 0·68) and 74 ± 9% in the unrelated donor HSCT post-IST failure controls (P = 0·02).The 2-year event-free survival in the upfront cohort was 92 ± 5% compared to 87 ± 4% in MSD controls (P = 0·37), 40 ± 7% in IST controls (P = 0·0001) and 74 ± 9% in the unrelated donor HSCT post-IST failure controls (n = 24) (P = 0·02). Outcomes for upfront-unrelated donor HSCT in paediatric idiopathic SAA were similar to MSD HSCT and superior to IST and unrelated donor HSCT post-IST failure. Front-line therapy with matched unrelated donor HSCT is a novel treatment approach and could be considered as first-line therapy in selected paediatric patients who lack a MSD. © 2015 John Wiley & Sons Ltd.
Resumo:
U-BIOPRED is a European Union consortium of 20 academic institutions, 11 pharmaceutical companies and six patient organisations with the objective of improving the understanding of asthma disease mechanisms using a systems biology approach.This cross-sectional assessment of adults with severe asthma, mild/moderate asthma and healthy controls from 11 European countries consisted of analyses of patient-reported outcomes, lung function, blood and airway inflammatory measurements.Patients with severe asthma (nonsmokers, n=311; smokers/ex-smokers, n=110) had more symptoms and exacerbations compared to patients with mild/moderate disease (n=88) (2.5 exacerbations versus 0.4 in the preceding 12 months; p<0.001), with worse quality of life, and higher levels of anxiety and depression. They also had a higher incidence of nasal polyps and gastro-oesophageal reflux with lower lung function. Sputum eosinophil count was higher in severe asthma compared to mild/moderate asthma (median count 2.99% versus 1.05%; p=0.004) despite treatment with higher doses of inhaled and/or oral corticosteroids.Consistent with other severe asthma cohorts, U-BIOPRED is characterised by poor symptom control, increased comorbidity and airway inflammation, despite high levels of treatment. It is well suited to identify asthma phenotypes using the array of "omic" datasets that are at the core of this systems medicine approach.
Resumo:
Millets are major food and feed sources in the developing world especially in the semi-arid tropical regions of Africa and Asia. The most widely cultivated millets are pearl millet [Pennisetum glaucum (L.) R. Br.], finger millet [Eleusine coracana (L.) Gaertn], foxtail millet [Setaria italica (L.) P. Beauvois], Japanese barnyard millet [Echinochloa esculneta (A. Braun) H. Scholz], Indian Barnyard millet [Echinochloa frumetacea Link], kodo millet [Paspalum scrobiculatum L.], little millet [Panicum sumatrense Roth.ex.Roem. & Schult.], proso millet [Panicum miliaceum L.], tef [Eragrostis tef (Zucc.) Trotter] and fonio or acha [Digitaria exilis (Kippist) Stapf and D. iburua Stapf]. Millets are resilient to extreme environmental conditions especially to inadequate moisture and are rich in nutrients. Millets are also considered to be a healthy food, mainly due to the lack of gluten (a substance that causes coeliac disease) in their grain. Despite these agronomic, nutritional and health-related benefits, millets produce very low yield compared to major cereals such as wheat and rice. This extremely low productivity is related to the challenging environment in which they are extensively cultivated and to the little research investment in these crops. Recently, several national and international initiatives have begun to support the improvement of diverse millet types.
Resumo:
Questions Do extreme dry spells in late summer or in spring affect abundance and species composition of the reproductive shoots and the seed rain in the next annual crop? Are drought effects on reproductive shoots related to the rooting depths of species? Location Species-rich semi-natural grassland at Negrentino, Switzerland. Methods In plots under automated rain-out shelters, rainwater was added to simulate normal conditions and compare them with two experimentally effected long dry spells, in late summer (2004) and in the following spring (2005). For 28 plots, numbers of reproductive shoots per species were counted in 1-m2 areas and seed rain was estimated using nine sticky traps of 102 cm2 after dry spells. Results The two extreme dry spells in late summer and spring were similar in length and their probability of recurrence. They independently reduced the subsequent reproductive output of the community, while their seasonal timing modified its species composition. Compared to drought in spring, drought in late summer reduced soil moisture more and reduced the number of reproductive shoots of more species. The negative effects of summer drought decreased with species’ rooting depth. The shallow-rooted graminoids showed a consistent susceptibility to summer drought, while legumes and other forbs showed more varied responses to both droughts. Spring drought strongly reduced density (–53%) and species richness (–43%) of the community seed rain, while summer drought had only a marginally significant impact on seed density of graminoids (–44%). Reductions in seed number per shoot vs reproductive shoot density distinguished the impacts of drought with respect to its seasonal timing. Conclusion The essentially negative impact of drought in different seasons on reproductive output suggests that more frequent dry spells could contribute to local plant diversity loss by aggravating seed deficiency in species-rich grassland.
Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought
Resumo:
Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function.
Resumo:
Tef [Eragrostis tef (Zucc.) Trotter] and finger millet [Eleusine coracana Gaertn] are staple cereal crops in Africa and Asia with several desirable agronomic and nutritional properties. Tef is becoming a life-style crop as it is gluten-free while finger millet has a low glycemic index which makes it an ideal food for diabetic patients. However, both tef and finger millet have extremely low grain yields mainly due to moisture scarcity and susceptibility of the plants to lodging. In this study, the effects of gibberellic acid (GA) inhibitors particularly paclobutrazol (PBZ) on diverse physiological and yield-related parameters were investigated and compared to GA mutants in rice (Oryza sativa L.). The application of PBZ to tef and finger millet significantly reduced the plant height and increased lodging tolerance. Remarkably, PBZ also enhanced the tolerance of both tef and finger millet to moisture deficit. Under moisture scarcity, tef plants treated with PBZ did not exhibit drought-related symptoms and their stomatal conductance was unaltered, leading to higher shoot biomass and grain yield. Semi-dwarf rice mutants altered in GA biosynthesis, were also shown to have improved tolerance to dehydration. The combination of traits (drought tolerance, lodging tolerance and increased yield) that we found in plants with altered GA pathway is of importance to breeders who would otherwise rely on extensive crossing to introgress each trait individually. The key role played by PBZ in the tolerance to both lodging and drought calls for further studies using mutants in the GA biosynthesis pathway in order to obtain candidate lines which can be incorporated into crop-breeding programs to create lodging tolerant and climate-smart crops.