326 resultados para Reinhard
Resumo:
OBJECTIVES The occurrence of multinucleated giant cells (MNGCs) on bone substitute materials has been recognized for a long time. However, there have been no studies linking material characteristics with morphology of the MNGCs. The aim was to analyze the qualitative differences of MNGCs on two commercially available calcium phosphate bone substitute materials retrieved from bone defects. MATERIAL AND METHODS Six defects were prepared bilaterally in the mandibular body of three mini pigs. The defects were randomly grafted with either deproteinized bovine bone mineral (DBBM) or biphasic calcium phosphate (BCP). After a healing period of four weeks, bone blocks were embedded in LR White resin. Three consecutive sections per defect were analyzed as follows: two with light microscopy using toluidine blue and tartrate-resistant acid phosphatase (TRAP) staining and one with transmission electron microscopy. RESULTS Multinucleated giant cells appeared on both biomaterials. On BCP, MNGCs had a flat morphology and were not observed in resorption lacunae. On DBBM, the MNGCs appeared more round and were often found in shallow concavities. MNGCs on both biomaterials demonstrated a varying degree of TRAP staining, with a tendency toward higher staining intensity of MNGCs on BCP. At the ultrastructural level, signs of superficial dissolution of BCP together with phagocytosis of minor fragments were observed. MNGCs on the surface of DBBM demonstrated sealing zones and ruffled borders, both features of mature osteoclasts. CONCLUSION MNGCs demonstrated distinctly different histological features depending on the bone substitute material used. Further research is warranted to understand the clinical implications of these morphological observations.
Resumo:
OBJECTIVES Uncontrolled diabetes mellitus is associated with impaired osseointegration. Diabetic individuals might benefit from bone anabolic therapies. Intermittent administration of 1-34 parathyroid hormone (PTH) stimulates bone formation in rodent models. However, this anabolic effect fails in diabetic rats. Whether the anabolic effect of PTH can be achieved in insulin-controlled diabetic rats has not been investigated yet. MATERIALS AND METHODS After diabetes induction with streptozotocin in 40 female Wistar rats, the animals were randomly divided into 4 groups: diabetes, diabetes plus PTH, insulin-treated diabetes, and insulin-treated diabetes plus PTH. After 1 week, miniscrews were inserted in the tibiae. Osmotic pumps with insulin or saline solution were implanted. Animals received 60 mg/kg PTH or saline solution. Histomorphometric analysis was performed. RESULTS In diabetic rats, no changes of medullary periimplant bone area or bone-to-implant contacts (BICs) were achieved with or without treatment with PTH. However, also animals treated with insulin failed to response significantly to PTH regarding bone area (7.4 ± 4.1% and 8.1 ± 4.1%) and BICs (33.7 ± 16.9% and 49.9 ± 11.9%). CONCLUSION These results demonstrate that the metabolic characteristics of the diabetic rats produced a condition unable to respond to PTH treatment, even when hyperglycemia was controlled with insulin.
Resumo:
PURPOSE Whole saliva comprises components of the salivary pellicle that spontaneously forms on surfaces of implants and teeth. However, there are no studies that functionally link the salivary pellicle with a possible change in gene expression. MATERIALS AND METHODS This study examined the genetic response of oral fibroblasts exposed to the salivary pellicle and whole saliva. Oral fibroblasts were seeded onto a salivary pellicle and the respective untreated surface. Oral fibroblasts were also exposed to freshly harvested sterile-filtered whole saliva. A genome-wide microarray of oral fibroblasts was performed, followed by gene ontology screening with DAVID functional annotation clustering, KEGG pathway analysis, and the STRING functional protein association network. RESULTS Exposure of oral fibroblasts to saliva caused 61 genes to be differentially expressed (P < .05). Gene ontology screening assigned the respective genes into 262 biologic processes, 3 cellular components, 13 molecular functions, and 7 pathways. Most remarkable was the enrichment in the inflammatory response. None of the genes regulated by whole saliva was significantly changed when cells were placed onto a salivary pellicle. CONCLUSION The salivary pellicle per se does not provoke a significant inflammatory response of oral fibroblasts in vitro, whereas sterile-filtered whole saliva does produce a strong inflammatory response.
Resumo:
Toothpastes contain three main components: detergents, abrasives, and fluoride. Detergents, particularly sodium lauryl sulfate, have been proposed as components that enable toothpastes to produce cytotoxic effects in vitro. However, not all toothpastes contain sodium lauryl sulfate, and almost no studies have found an association between detergents and the in vitro cytotoxicity of toothpastes. The present study examined the in vitro cytotoxicity of nine commercially available toothpastes containing four different detergents. Toothpastes were diluted in serum-free medium, centrifuged, and filter sterilized. The half-lethal concentration of the toothpaste-conditioned medium (TCM) was calculated based on the formation of formazan by gingival fibroblasts, oral squamous cell carcinoma HSC-2 cells, and L929 cells. Cell proliferation was analyzed, and live-dead staining was performed, after exposure of cells to conditioned medium prepared with 1% toothpaste (1% TCM). It was found that toothpastes containing sodium lauryl sulfate and amine fluoride strongly inhibited cell viability with the half-lethal concentration being obtained with conditioned medium prepared with approximately 1% toothpaste (1% TCM). Toothpastes containing cocamidopropyl betaine and Steareth-20 showed higher half-lethal concentration values, with the half-lethal concentration being obtained with conditioned medium prepared with 10% (10% TCM) and 70% (70% TCM) toothpaste, respectively. Proliferation and live-dead data were consistent with the cell-viability analyses. These results demonstrate that the type of detergent in toothpastes can be associated with changes in in vitro cell toxicity.
Resumo:
AIM Vitamin D deficiency is considered to diminish bone regeneration. Yet, raising the serum levels takes months. A topic application of the active vitamin D metabolite, calcitriol, may be an effective approach. Thus, it becomes important to know the effect of vitamin D deficiency and local application on alveolar bone regeneration. MATERIAL AND METHODS Sixty rats were divided into three groups; two vitamin depletion groups and a control group. Identical single defects (2 mm diameter) were created in the maxilla and mandible treated with calcitriol soaked collagen in one deficiency group while in the other two groups not. Histomorphometric analysis and micro CTs were performed after 1 and 3 weeks. Serum levels of 25(OH)D3 and PTH were determined. RESULTS Bone formation rate significantly increased within the observation period in all groups. Bone regeneration was higher in the maxilla than in the mandible. However, bone regeneration was lower in the control group compared to vitamin depletion groups, with no significant effects by local administration of calcitriol (micro CT mandible p = 0.003, maxilla p < 0.001; histomorphometry maxilla p = 0.035, mandible p = 0.18). CONCLUSION Vitamin D deficiency not necessarily impairs bone regeneration in the rat jaw and a single local calcitriol application does not enhance healing.
Resumo:
BACKGROUND AND OBJECTIVE Inhibition of prolyl hydroxylases stimulates bone regeneration. Consequently, bone substitute materials were developed that release prolyl hydroxylase inhibitors. However, the impact of prolyl hydroxylase inhibitors released from these carriers on osteoclastogenesis is not clear. We therefore assessed the effect of bone substitute materials that release prolyl hydroxylase inhibitors on osteoclastogenesis. MATERIAL AND METHODS Dimethyloxalylglycine, desferrioxamine, and l-mimosine were lyophilized onto bovine bone mineral and hydroxyapatite, and supernatants were generated. Osteoclastogenesis was induced in murine bone marrow cultures in the presence of the supernatants from bone substitute materials. The formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and TRAP activity were determined. To test for possible effects on osteoclast progenitor cells, we measured the effect of the supernatants on proliferation and viability. In addition, experiments were performed where prolyl hydroxylase inhibitors were directly added to the bone marrow cultures. RESULTS We found that prolyl hydroxylase inhibitors released within the first hours from bone substitute materials reduce the number and activity of TRAP-positive multinucleated cells. In line with this, addition of prolyl hydroxylase inhibitors directly to the bone marrow cultures dose-dependently reduced the number of TRAP-positive multinucleated cells and the overall resorption activity. Moreover, the released prolyl hydroxylase inhibitors decreased proliferation but not viability of osteoclast progenitor cells. CONCLUSION Our results show that prolyl hydroxylase inhibitors released from bone substitute materials decrease osteoclastogenesis in murine bone marrow cultures.
Resumo:
Osteoclast research has an exciting history and a challenging future. More than 3 decades ago, it became evident that bone-resorbing osteoclasts are of hematopoietic origin and are ultimately linked to the "basic multicellular unit," where they team up with the other cell types, including bone-forming osteoblasts. Since 2 decades, we have learned about the signaling pathways controlling genes relevant for osteoclastogenesis and bone resorption. It took another decade until the hypothesized "osteoclast differentiation" factor was discovered and was translated into an approved pharmacologic strategy. Here, the focus is on another molecular target, cathepsin K, a cysteine protease being released by the osteoclast into the resorption compartment. Genetic deletion and pharmacological blocking of cathepsin K reduces bone resorption but with ongoing bone formation. This observation not only holds great promise to become a new pharmacologic strategy, but it also provides new insights into the coordinated work of cells in the "basic multicellular unit" and thus, bridges the history and future of osteoclast research. This article is a short primer on osteoclast biology for readers of the special issue on odanacatib, a cathepsin K inhibitor.
Resumo:
AIM Pharmacological inhibitors of prolyl hydroxylases, also termed hypoxia-mimetic agents (HMAs), when repeatedly injected can support angiogenesis and bone regeneration. However, the possible role of HMA loaded onto bone substitutes to support angiogenesis and bone regeneration under diabetic condition is unknown. The capacity of HMA loaded onto deproteinized bovine bone mineral (DBBM) to support angiogenesis and bone formation was examined in diabetic Wistar rats. METHODS Diabetes was induced by intraperitoneal injection of streptozotocin. The HMA dimethyloxalylglycine (DMOG) and desferrioxamine (DFO) were lyophilized onto DBBM. Calvarial defects were created with a trephine drill and filled with the respective bone substitutes. After 4 weeks of healing, the animals were subjected to histological and histomorphometric analysis. RESULTS In this report, we provide evidence that DMOG loaded onto DBBM can support angiogenesis in vivo. Specifically, we show that DMOG increased the vessel area in the defect site to 2.4% ± 1.3% compared with controls 1.1% ± 0.48% (P = 0.012). There was a trend toward an increased vessel number in the defect site with 38.6 ± 17.4 and 31.0 ± 10.3 in the DMOG and the control group (P = 0.231). The increase in angiogenesis, however, did not translate into enhanced bone formation in the defect area with 9.2% ± 7.1% and 8.4% ± 5.6% in DMOG and control group, respectively. No significant changes were caused by DFO. CONCLUSIONS The results suggest that DMOG loaded onto DBBM can support angiogenesis, but bone formation does not increase accordingly in a type 1 diabetic rat calvarial defect model at the indicated time point.
Resumo:
OBJECTIVES Saliva has been implicated to support oral wound healing, a process that requires a transient inflammatory reaction. However, definitive proof that saliva can provoke an inflammatory response remained elusive. MATERIALS AND METHODS We investigated the ability of freshly harvested and sterile-filtered saliva to cause an inflammatory response of oral fibroblasts and epithelial cells. The expression of cytokines and chemokines was assessed by microarray, RT-PCR, immunoassays, and Luminex technology. The involvement of signaling pathways was determined by Western blot analysis and pharmacologic inhibitors. RESULTS We report that sterile-filtered whole saliva was a potent inducer of IL-6 and IL-8 in fibroblasts from the gingiva, the palate, and the periodontal ligament, but not of oral epithelial cells. This strong inflammatory response requires nuclear factor-kappa B and mitogen-activated protein kinase signaling. The pro-inflammatory capacity is heat stable and has a molecular weight of <40 kDa. Genome-wide microarrays and Luminex technology further revealed that saliva substantially increased expression of other inflammatory genes and various chemokines. To preclude that the observed pro-inflammatory activity is the result of oral bacteria, sterile-filtered parotid saliva, collected under almost aseptic conditions, was used and also increased IL-6 and IL-8 expression in gingiva fibroblasts. The inflammatory response was, furthermore, independent of MYD88, an adapter protein of the Toll-like receptor signaling pathway. CONCLUSIONS We conclude that saliva can provoke a robust inflammatory response in oral fibroblasts involving the classical nuclear factor-kappa B and mitogen-activated protein kinase signaling pathway. CLINICAL RELEVANCE Since fibroblasts but not epithelial cells show a strong inflammatory response, saliva may support the innate immunity of defect sites exposing the oral connective tissue.
Resumo:
AIM To assess the pro-angiogenic and pro-inflammatory capacity of the dentine-pulp complex in response to the prolyl hydroxylase inhibitor L-mimosine in a tooth slice organ culture model. METHODOLOGY Human teeth were sectioned transversely into 600-μm-thick slices and cultured in medium supplemented with serum and antibiotics. Then, pulps were stimulated for 48 h with L-mimosine. Pulps were subjected to viability measurements based on formazan formation in MTT assays. In addition, histological evaluation of pulps was performed based on haematoxylin and eosin staining. Culture supernatants were subjected to immunoassays for vascular endothelial growth factor (VEGF) to determine the pro-angiogenic capacity and to immunoassays for interleukin (IL)-6 and IL-8 to assess the pro-inflammatory response. Interleukin-1 served as pro-inflammatory control. Echinomycin was used to inhibit hypoxia-inducible factor-1 (HIF-1) alpha activity. Data were analysed using Student's t-test and Mann-Whitney U test. RESULTS Pulps within tooth slices remained vital upon L-mimosine stimulation as indicated by formazan formation and histological evaluation. L-mimosine increased VEGF production when normalized to formazan formation in the pulp tissue of the tooth slices (P < 0.05). This effect on VEGF was reduced by echinomycin (P < 0.01). Changes in normalized IL-6 and IL-8 levels upon treatment with L-mimosine did not reach the level of significance (P > 0.05), whilst treatment with IL-1, which served as positive control, increased IL-6 (P < 0.05) and IL-8 levels (P < 0.05). CONCLUSIONS The prolyl hydroxylase inhibitor L-mimosine increased VEGF production via HIF-1 alpha in the tooth slice organ culture model whilst inducing no prominent increase in IL-6 and IL-8. Pre-clinical studies will reveal if these in vitro effects translate into dental pulp regeneration.
Resumo:
OBJECTIVE Short implants are increasingly used, but there is doubt about their performance being similar to that of regular implants. The aim of this study was to compare the mechanical stability of short implants vs. regular implants placed in the edentulous posterior mandible. MATERIAL AND METHODS Twenty-three patients received a total of 48 short implants (5 × 5.5 mm and 5 × 7 mm) and 42 regular implants (4 × 10 mm and 4 × 11.5 mm) in the posterior mandible. Patients who received short implants had <10 mm of bone height measured from the bone crest to the outer wall of the mandibular canal. Resonance frequency analysis (RFA) was performed at time intervals T0 (immediately after implant placement), T1 (after 15 days), T2 (after 30 days), T3 (after 60 days), and T4 (after 90 days). RESULTS The survival rate after 90 days was 87.5% for the short implants and 100% for regular implants (P < 0.05). There was no significant difference between the implants in time intervals T1, T2, T3, and T4. In T0, the RFA values of 5 × 5.5 implants were higher than values of 5 × 7 and 4 × 11.5 implants (P < 0.05). A total of six short implants that were placed in four patients were lost (three of 5 × 5.5 mm and three of 5 × 7 mm). Three lost implants started with high ISQ values, which progressively decreased. The other three lost implants started with a slightly lower ISQ value, which rose and then began to fall. CONCLUSIONS Survival rate of short implants after 90 days was lower than that of regular implants. However, short implants may be considered a reasonable alternative for rehabilitation of severely resorbed mandibles with reduced height, to avoid performing bone reconstruction before implant placement. Patients need to be aware of the reduced survival rate compared with regular implants before implant placement to avoid disappointments.
Resumo:
OBJECTIVE Adhesion of osteogenic cells on titanium surfaces is a prerequisite for osseointegration. Alkali treatment can increase the hydrophilicity of titanium implant surfaces, thereby supporting the adhesion of blood components. However, it is unclear if alkali treatment also supports the adhesion of cells with a fibroblastic morphology to titanium. MATERIALS AND METHODS Here, we have used a titanium alloy (Ti-6AL-4V) processed by alkali treatment to demonstrate the impact of hydrophilicity on the adhesion of primary human gingival fibroblast and bone cells. Also included were the osteosarcoma and fibroblastoma cell lines, MG63 and L929, respectively. Cell adhesion was determined by scanning electron microscopy. We also measured viability, proliferation, and protein synthesis of the adherent cells. RESULTS Alkali treatment increased the adhesion of gingival fibroblasts, bone cells, and the two cell lines when seeded onto the titanium alloy surface for 1 h. At 3 h, no significant changes in cell adhesion were observed. Cells grown for 1 day on the titanium alloy surfaces processed by alkali treatment behave similarly to untreated controls with regard to viability, proliferation, and protein synthesis. CONCLUSION Based on these preliminary In vitro findings, we conclude that alkali treatment can support the early adhesion of cells with fibroblastic characteristics to a titanium alloy surface.
Resumo:
This chapter examines the state of evaluation training programs at European universities in 2012. It summarises the results of a survey that was conducted among representatives of 15 programs located in Belgium, Denmark, Greece, Italy, France, The Netherlands, Romania, Spain, Sweden and Switzerland. Some basic information about the programs are reported (e.g. organising body, degree offered, admission requirements, duration in months, price), as well as the programs’ core subjects and learning outcomes. The chapter discusses the challenges for university-based study programmes that arise from the current situation of the evaluation profession, and concludes with some thoughts on education and training as requirements for professionalisation in evaluation