313 resultados para neutron tomography


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The depth-dependent attenuation of the secondary cosmic-ray particle flux due to snow cover and its effects on production rates of cosmogenic nuclides constitutes a potential source of uncertainty for studies conducted in regions characterized by frequent seasonal snow burial. Recent experimental and numerical modelling studies have yielded new constraints on the effect of hydrogen-rich media on the production rates of cosmogenic nuclides by low- and high-energy neutrons (<10(-3) MeV and >10(2) MeV, respectively). Here we present long-term neutron-detector monitoring data from a natural setting that we use to quantify the effect of snow cover on the attenuation of fast neutrons (0.1-10 MeV), which are responsible for the production of Ne-21 from Mg and Cl-36 from K. We use data measured between July 2001 and May 2008 at seven stations located throughout the Ecrins-Pelvoux massif (French Western Alps) and its surroundings, at elevations ranging from 200 to 2500 m a.s.l. From the cosmic-ray fluxes recorded during summer, when snow is absent, we infer an apparent attenuation length of 148 g cm(-2) in the atmosphere at a latitude of similar to 45 degrees N and for altitudes ranging from similar to 200 to 2500 m a.s.l. Using snow water-equivalent (SWE) values obtained through snow-coring campaigns that overlap in time the neutron monitoring for five stations, we show that fast neutrons are much more strongly attenuated in snow than predicted by a conventional mass-shielding formulation and the attenuation length estimated in the atmosphere. We suggest that such strong attenuation results from boundary effects at the atmosphere/snow interface induced by the high efficiency of water as a neutron moderator. Finally, we propose an empirical model that allows calculating snow-shielding correction factors as a function of SWE for studies using Ne-21 and Cl-36 analyses in Mg- and K-rich minerals, respectively. This empirical model is of interest for studies with a focus on cosmic-ray exposure dating, particularly if the target rocks are made up of mafic to ultramafic units where seasonal snow-cover is a common phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an application and sample independent method for the automatic discrimination of noise and signal in optical coherence tomography Bscans. The proposed algorithm models the observed noise probabilistically and allows for a dynamic determination of image noise parameters and the choice of appropriate image rendering parameters. This overcomes the observer variability and the need for a priori information about the content of sample images, both of which are challenging to estimate systematically with current systems. As such, our approach has the advantage of automatically determining crucial parameters for evaluating rendered image quality in a systematic and task independent way. We tested our algorithm on data from four different biological and nonbiological samples (index finger, lemon slices, sticky tape, and detector cards) acquired with three different experimental spectral domain optical coherence tomography (OCT) measurement systems including a swept source OCT. The results are compared to parameters determined manually by four experienced OCT users. Overall, our algorithm works reliably regardless of which system and sample are used and estimates noise parameters in all cases within the confidence interval of those found by observers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001) compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001). Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compound of stoichiometry Mn(II)3[Mn(III)(CN)6]2·zH2O (z = 12−16) (1) forms air-stable, transparent red crystals. Low-temperature single crystal optical spectroscopy and single crystal X-ray diffraction provide compelling evidence for N-bonded high-spin manganese(II), and C-bonded low-spin manganese(III) ions arranged in a disordered, face-centered cubic lattice analogous to that of Prussian Blue. X-ray and neutron diffraction show structured diffuse scattering indicative of partially correlated (rather than random) substitutions of [Mn(III)(CN)6] ions by (H2O)6 clusters. Magnetic susceptibility measurements and elastic neutron scattering experiments indicate a ferrimagnetic structure below the critical temperature Tc = 35.5 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Selective retina therapy (SRT) has shown great promise compared to conventional retinal laser photocoagulation as it avoids collateral damage and selectively targets the retinal pigment epithelium (RPE). Its use, however, is challenging in terms of therapy monitoring and dosage because an immediate tissue reaction is not biomicroscopically discernibel. To overcome these limitations, real-time optical coherence tomography (OCT) might be useful to monitor retinal tissue during laser application. We have thus evaluated a proprietary OCT system for its capability of mapping optical changes introduced by SRT in retinal tissue. Methods: Freshly enucleated porcine eyes, covered in DMEM upon collection were utilized and a total of 175 scans from ex-vivo porcine eyes were analyzed. The porcine eyes were used as an ex-vivo model and results compared to two time-resolved OCT scans, recorded from a patient undergoing SRT treatment (SRT Vario, Medical Laser Center Lübeck). In addition to OCT, fluorescin angiography and fundus photography were performed on the patient and OCT scans were subsequently investigated for optical tissue changes linked to laser application. Results: Biomicroscopically invisible SRT lesions were detectable in OCT by changes in the RPE / Bruch's complex both in vivo and the porcine ex-vivo model. Laser application produced clearly visible optical effects such as hyperreflectivity and tissue distortion in the treated retina. Tissue effects were even discernible in time-resolved OCT imaging when no hyper-reflectivity persisted after treatment. Data from ex-vivo porcine eyes showed similar to identical optical changes while effects visible in OCT appeared to correlate with applied pulse energy, leading to an additional reflective layer when lesions became visible in indirect ophthalmoscopy. Conclusions: Our results support the hypothesis that real-time high-resolution OCT may be a promising modality to obtain additional information about the extent of tissue damage caused by SRT treatment. Data shows that our exvivo porcine model adequately reproduces the effects occurring in-vivo, and thus can be used to further investigate this promising imaging technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS The purpose of the present study was to investigate the relationship between in-stent neoatherosclerosis (NA) and native atherosclerosis progression of untreated coronary segments. METHODS AND RESULTS In-stent NA was assessed by optical coherence tomography (OCT) among patients included in the SIRTAX-LATE OCT study 5 years after drug-eluting stent (DES) (sirolimus-eluting and paclitaxel-eluting stents) implantation. Neoatherosclerosis was defined as the presence of fibroatheroma or fibrocalcific plaque within the neointima of stented segments with a longitudinal extension >1.0 mm. Atherosclerosis progression in untreated native coronary segments was evaluated by serial quantitative coronary angiography (QCA). The change in minimal lumen diameter (MLD) was serially assessed within matched segments at baseline and 5-year angiographic follow-up. The key clinical endpoint was non-target lesion (non-TL) revascularization throughout 5 years. A total of 88 patients with 88 lesions were available for OCT analysis 5 years after DES implantation. In-stent NA was observed in 16% of lesions with the majority of plaques being fibroatheromas (11.4%) followed by fibrocalcific plaques (5.7%). A total of 704 non-TL segments were serially evaluated by QCA. Between baseline and 5-year follow-up, the reduction in MLD was significantly more pronounced in patients with NA (-0.25 mm, 95% CI -0.36 to -0.17 mm) when compared with patients without NA (-0.13 mm, 95% CI -0.17 to -0.10 mm, P = 0.002). Similarly, non-TL revascularization was more frequent in patients with NA (78.6%) when compared with patients without NA (44.6%, P = 0.028) throughout 5 years. CONCLUSIONS In-stent NA is more common among patients with angiographic and clinical evidence of native atherosclerosis progression suggesting similar pathophysiological mechanisms.SIRTAX trial is registered at http://www.clinicaltrials.gov/ct2/show/NCT00617084.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To assess intra- and subretinal fluid during the loading phase with intravitreal ranibizumab in exudative age-related macular degeneration and to quantify the accuracy of crosshair scan spectral-domain optical coherence tomography with regard to retinal fluid. METHODS This is a retrospective study of 31 treatment-naive patients who received 3 monthly intravitreal ranibizumab injections. Visual acuity and the presence of retinal fluid were assessed at each visit using volume and crosshair scan protocols. RESULTS Visual acuity improved and central retinal thickness decreased significantly during the loading phase. However, retinal fluid persisted in two thirds of the patients. The accuracy of the crosshair scan to detect fluid was 93%. CONCLUSIONS A substantial proportion of eyes had persistent fluid after 3 months of ranibizumab injections. However, visual improvement was independent of residual fluid. Message: Crosshair scans detect relevant collections of retinal fluid accurately and may be sufficient in daily clinical practice. © 2015 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Graves' orbitopathy (GO) is an extraocular eye disease with symptoms ranging from minor discomfort from dry eyes to strabismus and visual loss. One of the hallmarks of active GO is visible hyperemia at the insertion of the extraocular muscles. The aim of the present study was to evaluate the use of enhanced-depth imaging spectral domain anterior segment optical coherence tomography (EDI SD AS-OCT) for detecting pathological changes in horizontal recti muscles of patients with GO. METHODS Prospective cross sectional study of 27 eyes. Only women were included. EDI AS-OCT was used to measure the thickness of the tendons of the horizontal recti muscles in a predefined area in patients with GO and healthy controls. RESULTS EDI AS-OCT was able to image the tendons of the horizontal recti muscles in both healthy controls and patients suffering from GO. The mean thickness of the medial rectus muscle (MR) tendon was 256.4 μm [±17.13 μm standard deviation (SD)] in the GO group and, therefore, significantly thicker (p = 0.046) than in the healthy group which had a mean thickness of 214.7 μm (±5.516 μm SD). There was no significant difference in the mean thickness of the tendon of the lateral recti muscles (LRs) between these groups. CONCLUSION This is the first report showing that EDI AS-OCT is suitable to detect swelling at the insertion site of the MR muscle in GO. MR tendon thickness may be a useful parameter to monitor activity in these patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND To investigate anterior scleral thickness in a cohort of healthy subjects using enhanced depth imaging anterior segment optical coherence tomography. METHODS Observational case series. The mean scleral thickness in the inferonasal, inferotemporal, superotemporal, and superonasal quadrant was measured 2 mm from the scleral spur on optical coherence tomography in healthy volunteers. RESULTS Fifty-three eyes of 53 Caucasian patients (25 male and 28 female) with an average age of 48.6 years (range: 18 to 92 years) were analysed. The mean scleral thickness was 571 μm (SD 84 μm) in the inferonasal quadrant, 511 μm (SD 80 μm) in the inferotemporal quadrant, 475 (SD 81 μm) in the superotemporal, and 463 (SD 64 μm) in the superonasal quadrant. The mean scleral thickness was significantly different between quadrants (p < 0.0001, repeated measures one-way ANOVA). The association between average scleral thickness and age was statistically significant (p < 0.0001, Pearson r = 0.704). CONCLUSIONS Enhanced depth imaging optical coherence tomography revealed the detailed anatomy of the anterior sclera and enabled non-invasive measurements of scleral thickness in a non-contact approach. The anterior scleral thickness varies significantly between quadrants, resembling the spiral of Tillaux. An association of increasing scleral thickness with age was found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A time-lapse pressure tomography inversion approach is applied to characterize the CO2 plume development in a virtual deep saline aquifer. Deep CO2 injection leads to flow properties of the mixed-phase, which vary depending on the CO2 saturation. Analogous to the crossed ray paths of a seismic tomographic experiment, pressure tomography creates streamline patterns by injecting brine prior to CO2 injection or by injecting small amounts of CO2 into the two-phase (brine and CO2) system at different depths. In a first step, the introduced pressure responses at observation locations are utilized for a computationally rapid and efficient eikonal equation based inversion to reconstruct the heterogeneity of the subsurface with diffusivity (D) tomograms. Information about the plume shape can be derived by comparing D-tomograms of the aquifer at different times. In a second step, the aquifer is subdivided into two zones of constant values of hydraulic conductivity (K) and specific storage (Ss) through a clustering approach. For the CO2 plume, mixed-phase K and Ss values are estimated by minimizing the difference between calculated and “true” pressure responses using a single-phase flow simulator to reduce the computing complexity. Finally, the estimated flow property is converted to gas saturation by a single-phase proxy, which represents an integrated value of the plume. This novel approach is tested first with a doublet well configuration, and it reveals a great potential of pressure tomography based concepts for characterizing and monitoring deep aquifers, as well as the evolution of a CO2 plume. Still, field-testing will be required for better assessing the applicability of this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel canisters and as drift seals. Sand/bentonite (s/b) is foreseen as backfill material of access galleries or as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore-water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predicted significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this thesis was to characterize and quantify the cement/bentonite interactions both spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used to perform X-ray computed tomography (CT) scans without interruption of running experiments. CT scans allowed tracking the evolution of the reaction plume and changes in core volume/diameter/density during the experiments. In total 4 core infiltration experiments were carried out for this study with the compacted and saturated cores consisting of MX-80 bentonite and sand/MX-80 bentonite mixture (s/b; 65/35%). Two different high-pH cementitious pore-fluids were infiltrated: a young (early) ordinary Portland cement pore-fluid (APWOPC; K+–Na+–OH-; pH 13.4; ionic strength 0.28 mol/kg) and a young ‘low-pH’ ESDRED shotcrete pore-fluid (APWESDRED; Ca2+–Na+–K+–formate; pH 11.4; ionic strength 0.11 mol/kg). The experiments lasted between 1 and 2 years. In both bentonite experiments, the hydraulic conductivity was strongly reduced after switching to high-pH fluids, changing eventually from an advective to a diffusion-dominated transport regime. The reduction was mainly induced by mineral precipitation and possibly partly also by high ionic strength pore-fluids. Both bentonite cores showed a volume reduction and a resulting transient flow in which pore-water was squeezed out during high-pH infiltration. The outflow chemistry was characterized by a high ionic strength, while chloride in the initial pore water got replaced as main anionic charge carrier by sulfate, originating from gypsum dissolution. The chemistry of the high-pH fluids got strongly buffered by the bentonite, consuming hydroxide and in case of APWESDRED also formate. Hydroxide got consumed by mineral reactions (saponite and possibly talc and brucite precipitation), while formate being affected by bacterial degradation. Post-mortem analysis showed reaction zones near the inlet of the bentonite core, characterized by calcium and magnesium enrichment, consisting predominately of calcite and saponite, respectively. Silica got enriched in the outflow, indicating dissolution of silicate-minerals, identified as preferentially cristobalite. In s/b, infiltration of APWOPC reduced the hydraulic conductivity strongly, while APWESDRED infiltration had no effect. The reduction was mainly induced by mineral precipitation and probably partly also by high ionic strength pore-fluids. Not clear is why the observed mineral precipitates in the APWESDRED experiment had no effect on the fluid flow. Both s/b cores showed a volume expansion along with decreasing ionic strengths of the outflow, due to mineral reactions or in case of APWESDRED infiltration also mediated by microbiological activity, consuming hydroxide and formate, respectively. The chemistry of the high-pH fluids got strongly buffered by the s/b. In the case of APWESDRED infiltration, formate reached the outflow only for a short time, followed by enrichment in acetate, indicating most likely biological activity. This was in agreement to post-mortem analysis of the core, observing black spots on the inflow surface, while the sample had a rotten-egg smell indicative of some sulfate reduction. Post-mortem analysis showed further in both cores a Ca-enrichment in the first 10 mm of the core due to calcite precipitation. Mg-enrichment was only observed in the APWOPC experiment, originating from newly formed saponite. Silica got enriched in the outflow of both experiments, indicating dissolution of silicate-minerals, identified in the OPC experiment as cristobalite. The experiments attested an effective buffering capacity for bentonite and s/b, a progressing coupled hydraulic-chemical sealing process and also the preservation of the physical integrity of the interface region in this setup with a total pressure boundary condition on the core sample. No complete pore-clogging was observed but the hydraulic conductivity got rather strongly reduced in 3 experiments, explained by clogging of the intergranular porosity (macroporosity). Such a drop in hydraulic conductivity may impact the saturation time of the buffer in a nuclear waste repository, although the processes and geometry will be more complex in repository situation.