261 resultados para Cerebral hemorrhage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE The purpose of this study was to compare postmortem computed tomography with forensic autopsy regarding their diagnostic reliability of differentiating between pre-existing cerebral edema and physiological postmortem brain swelling. MATERIALS AND METHODS The study collective included a total of 109 cases (n=109/200, 83 male, 26 female, mean age: 53.2 years) and were retrospectively evaluated for the following parameters (as related to the distinct age groups and causes of death): tonsillar herniation, the width of the outer and inner cerebrospinal fluid spaces and the radiodensity measurements (in Hounsfield Units) of the gray and white matter. The results were compared with the findings of subsequent autopsies as the gold standard for diagnosing cerebral edema. p-Values <0.05 were considered statistically significant. RESULTS Cerebellar edema (despite normal postmortem swelling) can be reliably assessed using postmortem computed tomography and is indicated by narrowed temporal horns and symmetrical herniation of the cerebellar tonsils (p<0.001). There was a significant difference (p<0.001) between intoxication (or asphyxia) and all other causes of death; the former causes demonstrated higher deviations of the attenuation between white and gray matter (>20 Hounsfield Units), and the gray to white matter ratio was >1.58 when leukoencephalopathy was excluded. CONCLUSIONS Despite normal postmortem changes, generalized brain edema can be differentiated on postmortem computed tomography, and white and gray matter Hounsfield measurements help to determine the cause of death in cases of intoxication or asphyxia. Racking the brain about feasible applications for a precise and reliable brain diagnostic forensic radiology method has just begun.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The history of cerebral aneurysm surgery owes a great tribute to the tenacity of pioneering neurosurgeons who designed and developed the clips used to close the aneurysms neck. However, until the beginning of the past century, surgery of complex and challenging aneurysms was impossible due to the lack of surgical microscope and commercially available sophisticated clips. The modern era of the spring clips began in the second half of last century. Until then, only malleable metal clips and other non-metallic materials were available for intracranial aneurysms. Indeed, the earliest clips were hazardous and difficult to handle. Several neurosurgeons put their effort in developing new clip models, based on their personal experience in the treatment of cerebral aneurysms. Finally, the introduction of the surgical microscope, together with the availability of more sophisticated clips, has allowed the treatment of complex and challenging aneurysms. However, today none of the new instruments or tools for surgical therapy of aneurysms could be used safely and effectively without keeping in mind the lessons on innovative surgical techniques provided by great neurovascular surgeons. Thanks to their legacy, we can now treat many types of aneurysms that had always been considered inoperable. In this article, we review the basic principles of surgical clipping and illustrate some more advanced techniques to be used for complex aneurysms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Continuous venovenous hemodialysis (CVVHD) may generate microemboli that cross the pulmonary circulation and reach the brain. The aim of the present study was to quantify (load per time interval) and qualify (gaseous vs. solid) cerebral microemboli (CME), detected as high-intensity transient signals, using transcranial Doppler ultrasound. MATERIALS AND METHODS Twenty intensive care unit (ICU group) patients requiring CVVHD were examined. CME were recorded in both middle cerebral arteries for 30 minutes during CVVHD and a CVVHD-free interval. Twenty additional patients, hospitalized for orthopedic surgery, served as a non-ICU control group. Statistical analyses were performed using the Mann-Whitney U test or the Wilcoxon matched-pairs signed-rank test, followed by Bonferroni corrections for multiple comparisons. RESULTS In the non-ICU group, 48 (14.5-169.5) (median [range]) gaseous CME were detected. In the ICU group, the 67.5 (14.5-588.5) gaseous CME detected during the CVVHD-free interval increased 5-fold to 344.5 (59-1019) during CVVHD (P<0.001). The number of solid CME was low in all groups (non-ICU group: 2 [0-5.5]; ICU group CVVHD-free interval: 1.5 [0-14.25]; ICU group during CVVHD: 7 [3-27.75]). CONCLUSIONS This observational pilot study shows that CVVHD was associated with a higher gaseous but not solid CME burden in critically ill patients. Although the differentiation between gaseous and solid CME remains challenging, our finding may support the hypothesis of microbubble generation in the CVVHD circuit and its transpulmonary translocation toward the intracranial circulation. Importantly, the impact of gaseous and solid CME generated during CVVHD on brain integrity of critically ill patients currently remains unknown and is highly debated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Perihematomal edema contributes to secondary brain injury in the course of intracerebral hemorrhage. The effect of decompressive surgery on perihematomal edema after intracerebral hemorrhage is unknown. This study analyzed the course of PHE in patients who were or were not treated with decompressive craniectomy. METHODS More than 100 computed tomography images from our published cohort of 25 patients were evaluated retrospectively at two university hospitals in Switzerland. Computed tomography scans covered the time from admission until day 100. Eleven patients were treated by decompressive craniectomy and 14 were treated conservatively. Absolute edema and hematoma volumes were assessed using 3-dimensional volumetric measurements. Relative edema volumes were calculated based on maximal hematoma volume. RESULTS Absolute perihematomal edema increased from 42.9 ml to 125.6 ml (192.8%) after 21 days in the decompressive craniectomy group, versus 50.4 ml to 67.2 ml (33.3%) in the control group (Δ at day 21 = 58.4 ml, p = 0.031). Peak edema developed on days 25 and 35 in patients with decompressive craniectomy and controls respectively, and it took about 60 days for the edema to decline to baseline in both groups. Eight patients (73%) in the decompressive craniectomy group and 6 patients (43%) in the control group had a good outcome (modified Rankin Scale score 0 to 4) at 6 months (P = 0.23). CONCLUSIONS Decompressive craniectomy is associated with a significant increase in perihematomal edema compared to patients who have been treated conservatively. Perihematomal edema itself lasts about 60 days if it is not treated, but decompressive craniectomy ameliorates the mass effect exerted by the intracerebral hemorrhage plus the perihematomal edema, as reflected by the reduced midline shift.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND White matter (WM) fibers connect different brain regions and are critical for proper brain function. However, little is known about the cerebral blood flow in WM and its relation to WM microstructure. Recent improvements in measuring cerebral blood flow (CBF) by means of arterial spin labeling (ASL) suggest that the signal in white matter may be detected. Its implications for physiology needs to be extensively explored. For this purpose, CBF and its relation to anisotropic diffusion was analyzed across subjects on a voxel-wise basis with tract-based spatial statistics (TBSS) and also across white matter tracts within subjects. METHODS Diffusion tensor imaging and ASL were acquired in 43 healthy subjects (mean age = 26.3 years). RESULTS CBF in WM was observed to correlate positively with fractional anisotropy across subjects in parts of the splenium of corpus callosum, the right posterior thalamic radiation (including the optic radiation), the forceps major, the right inferior fronto-occipital fasciculus, the right inferior longitudinal fasciculus and the right superior longitudinal fasciculus. Furthermore, radial diffusivity correlated negatively with CBF across subjects in similar regions. Moreover, CBF and FA correlated positively across white matter tracts within subjects. CONCLUSION The currently observed findings on a macroscopic level might reflect the metabolic demand of white matter on a microscopic level involving myelination processes or axonal function. However, the exact underlying physiological mechanism of this relationship needs further evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE The purpose of this study was to classify and detect intraretinal hemorrhage (IRH) in spectral domain optical coherence tomography (SD-OCT). METHODS Initially the presentation of IRH in BRVO-patients in SD-OCT was described by one reader comparing color-fundus (CF) and SD-OCT using dedicated software. Based on these established characteristics, the presence and the severity of IRH in SD-OCT and CF were assessed by two other masked readers and the inter-device and the inter-observer agreement were evaluated. Further the area of IRH was compared. RESULTS About 895 single B-scans of 24 eyes were analyzed. About 61% of SD-OCT scans and 46% of the CF-images were graded for the presence of IRH (concordance: 73%, inter-device agreement: k = 0.5). However, subdivided into previously established severity levels of dense (CF: 21.3% versus SD-OCT: 34.7%, k = 0.2), flame-like (CF: 15.5% versus SD-OCT: 45.5%, k = 0.3), and dot-like (CF: 32% versus SD-OCT: 24.4%, k = 0.2) IRH, the inter-device agreement was weak. The inter-observer agreement was strong with k = 0.9 for SD-OCT and k = 0.8 for CF. The mean area of IRH detected on SD-OCT was significantly greater than on CF (SD-OCT: 11.5 ± 4.3 mm(2) versus CF: 8.1 ± 5.5 mm(2), p = 0.008). CONCLUSIONS IRH seems to be detectable on SD-OCT; however, the previously established severity grading agreed weakly with that assessed by CF.