378 resultados para Pennsylvania Hospital (Philadelphia, Pa.)
Resumo:
In this paper, we investigated whether bcl-xL can be involved in the modulation of the angiogenic phenotype of human tumor cells. Using the ADF human glioblastoma and the M14 melanoma lines, and their derivative bcl-xL-overexpressing clones, we showed that the conditioned medium of bcl-xL transfectants increased in vitro endothelial cell functions, such as proliferation and morphogenesis, and in vivo vessel formation in Matrigel plugs, compared with the conditioned medium of control cells. Moreover, the overexpression of bcl-xL induced an increased expression of the proangiogenic interleukin-8 (CXCL8), both at the protein and mRNA levels, and an enhanced CXCL8 promoter activity. The role of CXCL8 on bcl-xL-induced angiogenesis was validated using CXCL8-neutralizing antibodies, whereas down-regulation of bcl-xL through antisense oligonucleotide or RNA interference strategies confirmed the involvement of bcl-xL on CXCL8 expression. Transient overexpression of bcl-xL led to extend this observation to other tumor cell lines with different origin, such as colon and prostate carcinoma. In conclusion, our results showed that CXCL8 modulation by bcl-xL regulates tumor angiogenesis, and they point to elucidate an additional function of bcl-xL protein.
Resumo:
There has been recent progress in the understanding of the pathogenesis of the hypereosinophilic syndromes (HES). This led to the distinction of subgroups, in which the underlying cause has been identified. Consequently, new treatment options became available, such as imatinib and mepolizumab, which proved to be promising. This article summarizes these new pharmacologic approaches to the therapy of HES.
Resumo:
PURPOSE: The purpose of this study was to determine the depth of penetration from mechanical chondroplasty and metabolic consequences of this procedure on the remaining articular cartilage. METHODS: Mechanical chondroplasty was performed in vitro on a portion of fresh grade I or II articular cartilage from 8 human knee arthroplasty specimens. Treated and control (untreated) explants (approximately 30 mg) were cut from the cartilage. The explants were divided into 2 groups, day 1 and day 4, placed separately in a 48-well plate containing media, and incubated at 37 degrees C for 24 hours. After the 24-hour incubation, the explants were weighed on day 1 and day 4, and explant media were removed and tested for total proteoglycan synthesis and aggrecan synthesis. At time 0, 2 sets (2.6 mm each) of treated and control cartilage slices were cut with a precision saw. One set was stained for confocal laser microscopy via a cytotoxicity stain to determine cell viability. The second set was stained with H;E to determine depth of penetration. RESULTS: The mean depth of penetration was 252.8 +/- 78 microm. There was no significant difference (P > .25) between total proteoglycan synthesis for control versus treatment groups on day 1 or 4. Aggrecan synthesis was significantly reduced on day 1 when normalized for tissue weight (P = .019) and double-stranded deoxyribonucleic acid (P = .004). On day 4, no significant difference was detected. Confocal laser microscopy did not show cell death below the zone of treatment. CONCLUSIONS: There was no significant metabolic consequence caused by chondroplasty to the remaining articular cartilage, and the zone of injury was limited to the treatment area. CLINICAL RELEVANCE: Mechanical chondroplasty causes no significant metabolic consequences to articular cartilage under these conditions.
Resumo:
BACKGROUND: Little information on the management and long-term follow-up of patients with biallelic mutations in the chloride channel gene CLCNKB is available. METHODS: Long-term follow-up was evaluated from 5.0 to 24 years (median, 14 years) after diagnosis in 13 patients with homozygous (n = 10) or compound heterozygous (n = 3) mutations. RESULTS: Medical treatment at last follow-up control included supplementation with potassium in 12 patients and sodium in 2 patients and medical treatment with indomethacin in 9 patients. At the end of follow-up, body height was 2.0 standard deviation score or less in 6 patients; 2 of these patients had growth hormone deficiency. Body weight (
Resumo:
When a child is not following the normal, predicted growth curve, an evaluation for underlying illness and central nervous system abnormalities is required and appropriate consideration should be given to genetic defects causing growth hormone (GH) deficiency. This article focuses on the GH gene, the various gene alterations, and their possible impact on the pituitary gland. Transcription factors regulating pituitary gland development may cause multiple pituitary hormone deficiency but may present initially as GH deficiency. The role of two most important transcription factors, POU1F1 (Pit-1) and PROP 1, is discussed.
Resumo:
PURPOSE: Gender-specific differences in substrate utilization during exercise have been reported, typically such that women rely more on fat than men. This study investigated whether gender differences exist in the utilization of intramyocellular lipids (IMCL) and glycogen. METHODS: IMCL and glycogen, as well as total fat and carbohydrate (CHO) oxidation were measured in nine males and nine females before, during, and after an endurance exercise. The trained subjects exercised on a bicycle ergometer at 50% maximal workload for 3 h. IMCL and glycogen were determined in the thigh by magnetic resonance spectroscopy. Oxygen uptake (VO(2)) and carbon dioxide production were determined by open circuit spirometry to calculate total fat and CHO oxidation. Relative power output, percent of maximum heart rate, VO(2peak), and respiratory exchange ratio were the same. RESULTS: Average fat oxidation was the same, whereas CHO oxidation was significantly higher in males compared with females. The relative contribution of these fuels to total energy used were similar in males and females. Males and females depleted IMCL and glycogen significantly (P < 0.001) during the 3-h exercise. IMCL levels at rest (P < 0.05) and its depletion during exercise (P < 0.001) were significantly higher in males compared with females, whereas glycogen was stored and used in the same range by both genders. CONCLUSION: During this 3-h exercise, energy supplies from fat and CHO were similar in both genders, and males as well as females reduced their IMCL stores significantly. The larger contribution of IMCL during exercise in males compared with females could either be a result of gender-specific substrate selection, or different long-term training habit.
Resumo:
PURPOSE: Activation of the double-stranded RNA-activated protein kinase (PKR) leads to the induction of various pathways including the down-regulation of translation through phosphorylation of the eukaryotic translation initiation factor 2alpha (eIF-2alpha). There have been no reports to date about the role of PKR in radiation sensitivity. EXPERIMENTAL DESIGN: A clonogenic survival assay was used to investigate the sensitivity of PKR mouse embryo fibroblasts (MEF) to radiation therapy. 2-Aminopurine (2-AP), a chemical inhibitor of PKR, was used to inhibit PKR activation. Nuclear factor-kappaB (NF-kappaB) activation was assessed by electrophoretic mobility shift assay (EMSA). Expression of PKR and downstream targets was examined by Western blot analysis and immunofluorescence. RESULTS: Ionizing radiation leads to dose- and time-dependent increases in PKR expression and function that contributes to increased cellular radiation resistance as shown by clonogenic survival and terminal nucleotidyl transferase-mediated nick end labeling (TUNEL) apoptosis assays. Specific inhibition of PKR with the chemical inhibitor 2-AP restores radiation sensitivity. Plasmid transfection of the PKR wild-type (wt) gene into PKR(-/-) MEFs leads to increased radiation resistance. The protective effect of PKR to radiation may be mediated in part through NF-kappaB and Akt because both NF-kappaB and Akt are activated after ionizing radiation in PKR+/+ but not PKR-/- cells. CONCLUSIONS: We suggest a novel role for PKR as a mediator of radiation resistance modulated in part through the protective effects of NF-kappaB and Akt activation. The modification of PKR activity may be a novel strategy in the future to overcome radiation resistance.