230 resultados para scientific publications


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Narcolepsy with cataplexy is a rare disease with an estimated prevalence of 0.02% in European populations. Narcolepsy shares many features of rare disorders, in particular the lack of awareness of the disease with serious consequences for healthcare supply. Similar to other rare diseases, only a few European countries have registered narcolepsy cases in databases of the International Classification of Diseases or in registries of the European health authorities. A promising approach to identify disease-specific adverse health effects and needs in healthcare delivery in the field of rare diseases is to establish a distributed expert network. A first and important step is to create a database that allows collection, storage and dissemination of data on narcolepsy in a comprehensive and systematic way. Here, the first prospective web-based European narcolepsy database hosted by the European Narcolepsy Network is introduced. The database structure, standardization of data acquisition and quality control procedures are described, and an overview provided of the first 1079 patients from 18 European specialized centres. Due to its standardization this continuously increasing data pool is most promising to provide a better insight into many unsolved aspects of narcolepsy and related disorders, including clear phenotype characterization of subtypes of narcolepsy, more precise epidemiological data and knowledge on the natural history of narcolepsy, expectations about treatment effects, identification of post-marketing medication side-effects, and will contribute to improve clinical trial designs and provide facilities to further develop phase III trials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to extensive clinical and electrophysiological overlaps, the correct diagnosis of disorders with excessive daytime sleepiness is often challenging. The aim of this study was to provide diagnostic measures that help discriminating such disorders, and to identify parameters, which don't. In this single-center study, we retrospectively identified consecutive treatment-naïve patients who suffered from excessive daytime sleepiness, and analyzed clinical and electrophysiological measures in those patients in whom a doubtless final diagnosis could be made. Of 588 patients, 287 reported subjective excessive daytime sleepiness. Obstructive sleep apnea is the only disorder that could be identified by polysomnography alone. The diagnosis of insufficient sleep syndrome relies on actigraphy as patients underestimate their sleep need and the disorder shares several clinical and electrophysiological properties with both narcolepsy type 1 and idiopathic hypersomnia. Sleep stage sequencing on MSLT appears helpful to discriminate between insufficient sleep syndrome and narcolepsy. Sleep inertia is a strong indicator for idiopathic hypersomnia. There are no distinctive electrophysiological findings for the diagnosis of restless legs syndrome. Altogether, EDS disorders are common in neurological sleep laboratories, but usually cannot be diagnosed based on PSG and MSLT findings alone. The diagnostic value of actigraphy recordings can hardly be overestimated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Under contact metamorphic conditions, carbonate rocks in the direct vicinity of the Adamello pluton reflect a temperature-induced grain coarsening. Despite this large-scale trend, a considerable grain size scatter occurs on the outcrop-scale indicating local influence of second-order effects such as thermal perturbations, fluid flow and second-phase particles. Second-phase particles, whose sizes range from nano- to the micron-scale, induce the most pronounced data scatter resulting in grain sizes too small by up to a factor of 10, compared with theoretical grain growth in a pure system. Such values are restricted to relatively impure samples consisting of up to 10 vol.% micron-scale second-phase particles, or to samples containing a large number of nano-scale particles. The obtained data set suggests that the second phases induce a temperature-controlled reduction on calcite grain growth. The mean calcite grain size can therefore be expressed in the form D 1⁄4 C2 eQ*/RT(dp/fp)m*, where C2 is a constant, Q* is an activation energy, T the temperature and m* the exponent of the ratio dp/fp, i.e. of the average size of the second phases divided by their volume fraction. However, more data are needed to obtain reliable values for C2 and Q*. Besides variations in the average grain size, the presence of second-phase particles generates crystal size distribution (CSD) shapes characterized by lognormal distributions, which differ from the Gaussian-type distributions of the pure samples. In contrast, fluid-enhanced grain growth does not change the shape of the CSDs, but due to enhanced transport properties, the average grain sizes increase by a factor of 2 and the variance of the distribution increases. Stable d18O and d13C isotope ratios in fluid-affected zones only deviate slightly from the host rock values, suggesting low fluid/rock ratios. Grain growth modelling indicates that the fluid-induced grain size variations can develop within several ka. As inferred from a combination of thermal and grain growth modelling, dykes with widths of up to 1 m have only a restricted influence on grain size deviations smaller than a factor of 1.1.To summarize, considerable grain size variations of up to one order of magnitude can locally result from second-order effects. Such effects require special attention when comparing experimentally derived grain growth kinetics with field studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertical profiles of stratospheric water vapour measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) with the full resolution mode between September 2002 and March 2004 and retrieved with the IMK/IAA scientific retrieval processor were compared to a number of independent measurements in order to estimate the bias and to validate the existing precision estimates of the MIPAS data. The estimated precision for MIPAS is 5 to 10% in the stratosphere, depending on altitude, latitude, and season. The independent instruments were: the Halogen Occultation Experiment (HALOE), the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the Improved Limb Atmospheric Spectrometer-II (ILAS-II), the Polar Ozone and Aerosol Measurement (POAM III) instrument, the Middle Atmospheric Water Vapour Radiometer (MIAWARA), the Michelson Interferometer for Passive Atmospheric Sounding, balloon-borne version (MIPAS-B), the Airborne Microwave Stratospheric Observing System (AMSOS), the Fluorescent Stratospheric Hygrometer for Balloon (FLASH-B), the NOAA frostpoint hygrometer, and the Fast In Situ Hygrometer (FISH). For the in-situ measurements and the ground based, air- and balloon borne remote sensing instruments, the measurements are restricted to central and northern Europe. The comparisons to satellite-borne instruments are predominantly at mid- to high latitudes on both hemispheres. In the stratosphere there is no clear indication of a bias in MIPAS data, because the independent measurements in some cases are drier and in some cases are moister than the MIPAS measurements. Compared to the infrared measurements of MIPAS, measurements in the ultraviolet and visible have a tendency to be high, whereas microwave measurements have a tendency to be low. The results of χ2-based precision validation are somewhat controversial among the comparison estimates. However, for comparison instruments whose error budget also includes errors due to uncertainties in spectrally interfering species and where good coincidences were found, the χ2 values found are in the expected range or even below. This suggests that there is no evidence of systematically underestimated MIPAS random errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Despite its limitations, citation analysis remains one of the best currently available tools for quantifying the impact of articles. Bibliometric studies list the "best-sellers" in a single location, and they have been published frequently in many fields during recent years. The purpose of the present study was to report the qualities and characteristics of citation classics in orthopaedic knee research. METHODS: The database of the Institute for Scientific Information (ISI) was utilized for identification of articles published from 1945 to March 2014. All knee articles that had been published in sixty-five orthopaedic and twenty-nine rheumatology journals and that had been cited at least 200 times were identified. The top 100 were selected for further analysis of authorship, source journal, number of citations, citation rate (both since publication and in 2013), geographic origin, article type, and level of evidence. RESULTS: The publication dates of the 100 most-cited articles ranged from 1948 to 2007, with the greatest number of articles published in the 1980s. Citations per article ranged from 2640 to 287. All articles were published in eleven of the ninety-four journals. The leading countries of origin were the U.S. followed by the U.K. and Sweden. The two main focus areas were sports traumatology and degenerative disease. The number of citations per article was also greatest for articles published in the 1980s. Basic research articles were cited more quickly, but not more often, than clinical articles. Most articles represented Level-IV evidence, followed by Levels II, III, and I. CONCLUSIONS: This bibliometric study is likely to include a list of intellectual milestones in orthopaedic knee research. It is apparent that a high level of evidence is not mandatory for an article to gain a large number of citations. Bibliometric reports provide a reflection of the quality of cited research published in a specific field and should therefore provoke thinking within the scientific community.