251 resultados para Reconstruction articulaire


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A well developed theoretical framework is available in which paleofluid properties, such as chemical composition and density, can be reconstructed from fluid inclusions in minerals that have undergone no ductile deformation. The present study extends this framework to encompass fluid inclusions hosted by quartz that has undergone weak ductile deformation following fluid entrapment. Recent experiments have shown that such deformation causes inclusions to become dismembered into clusters of irregularly shaped relict inclusions surrounded by planar arrays of tiny, new-formed (neonate) inclusions. Comparison of the experimental samples with a naturally sheared quartz vein from Grimsel Pass, Aar Massif, Central Alps, Switzerland, reveals striking similarities. This strong concordance justifies applying the experimentally derived rules of fluid inclusion behaviour to nature. Thus, planar arrays of dismembered inclusions defining cleavage planes in quartz may be taken as diagnostic of small amounts of intracrystalline strain. Deformed inclusions preserve their pre-deformation concentration ratios of gases to electrolytes, but their H2O contents typically have changed. Morphologically intact inclusions, in contrast, preserve the pre-deformation composition and density of their originally trapped fluid. The orientation of the maximum principal compressive stress (σ1σ1) at the time of shear deformation can be derived from the pole to the cleavage plane within which the dismembered inclusions are aligned. Finally, the density of neonate inclusions is commensurate with the pressure value of σ1σ1 at the temperature and time of deformation. This last rule offers a means to estimate magnitudes of shear stresses from fluid inclusion studies. Application of this new paleopiezometer approach to the Grimsel vein yields a differential stress (σ1–σ3σ1–σ3) of ∼300 MPa∼300 MPa at View the MathML source390±30°C during late Miocene NNW–SSE orogenic shortening and regional uplift of the Aar Massif. This differential stress resulted in strain-hardening of the quartz at very low total strain (<5%<5%) while nearby shear zones were accommodating significant displacements. Further implementation of these experimentally derived rules should provide new insight into processes of fluid–rock interaction in the ductile regime within the Earth's crust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the asymptotic form of the bulk Weyl tensor, we present an explicit approach that allows us to reconstruct exact four-dimensional Einstein spacetimes which are algebraically special with respect to Petrov’s classification. If the boundary metric supports a traceless, symmetric and conserved complex rank-two tensor, which is related to the boundary Cotton and energy-momentum tensors, and if the hydrodynamic congruence is shearless, then the bulk metric is exactly resummed and captures modes that stand beyond the hydrodynamic derivative expansion. We illustrate the method when the congruence has zero vorticity, leading to the Robinson-Trautman spacetimes of arbitrary Petrov class, and quote the case of non-vanishing vorticity, which captures the Plebański-Demiański Petrov D family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Chakhama Valley, a remote area in Pakistan-administered Kashmir, was badly damaged by the 7.6-magnitude earthquake that struck India and Pakistan on 8 October 2005. More than 5% of the population lost their lives, and about 90% of the existing housing was irreparably damaged or completely destroyed. In early 2006, the Aga Khan Development Network (AKDN) initiated a multisector, community-driven reconstruction program in the Chakhama Valley on the premise that the scale of the disaster required a response that would address all aspects of people's lives. One important aspect covered the promotion of disaster risk management for sustainable recovery in a safe environment. Accordingly, prevailing hazards (rockfalls, landslides, and debris flow, in addition to earthquake hazards) and existing risks were thoroughly assessed, and the information was incorporated into the main planning processes. Hazard maps, detailed site investigations, and proposals for precautionary measures assisted engineers in supporting the reconstruction of private homes in safe locations to render investments disaster resilient. The information was also used for community-based land use decisions and disaster mitigation and preparedness. The work revealed three main problems: (1) thorough assessment of hazards and incorporation of this assessment into planning processes is time consuming and often little understood by the population directly affected, but it pays off in the long run; (2) relocating people out of dangerous places is a highly sensitive issue that requires the support of clear and forceful government policies; and (3) the involvement of local communities is essential for the success of mitigation and preparedness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geological site characterisation programmes typically rely on drill cores for direct information on subsurface rocks. However, porosity, transport properties and porewater composition measured on drill cores can deviate from in-situ values due to two main artefacts caused by drilling and sample recovery: (1) mechanical disruption that increases porosity and (2) contamination of the porewater by drilling fluid. We investigated the effect and magnitude of these perturbations on large drill core samples (12–20 cm long, 5 cmdiameter) of high-grade, granitic gneisses obtained from 350 to 600 m depth in a borehole on Olkiluoto Island (SW Finland). The drilling fluid was traced with sodium–iodide. By combining out-diffusion experiments, gravimetry, UV-microscopy and iodide mass balance calculations, we successfully quantified the magnitudes of the artefacts: 2–6% increase in porosity relative to the bulk connected porosity and 0.9 to 8.9 vol.% contamination by drilling fluid. The spatial distribution of the drilling-induced perturbations was revealed by numerical simulations of 2D diffusion matched to the experimental data. This showed that the rims of the samples have a mechanically disrupted zone 0.04 to 0.22 cm wide, characterised by faster transport properties compared to the undisturbed centre (1.8 to 7.7 times higher pore diffusion coefficient). Chemical contamination was shown to affect an even wider zone in all samples, ranging from 0.15 to 0.60 cm, inwhich iodide enrichmentwas up to 180 mg/kgwater, compared to 0.5 mg/kgwater in the uncontaminated centre. For all samples in the present case study, it turned out that the magnitude of the artefacts caused by drilling and sample recovery is so small that no correction is required for their effects. Therefore, the standard laboratory measurements of porosity, transport properties and porewater composition can be taken as valid in-situ estimates. However, it is clear that the magnitudes strongly depend on site- and drilling-specific factors and therefore our results cannot be transferred simply to other locations. We recommend the approach presented in this study as a route to obtain reliable values in future drilling campaigns aimed at characterising in-situ bedrock properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charcoal analysis was conducted on sediment cores from three lakes to assess the relationship between the area and number of charcoal particles. Three charcoal-size parameters (maximum breadth, maximum length and area) were measured on sediment samples representing various vegetation types, including shrub tundra, boreal forest and temperate forest. These parameters and charcoal size-class distributions do not differ statistically between two sites where the same preparation technique (glycerine pollen slides) was used, but they differ for the same core when different techniques were applied. Results suggest that differences in charcoal size and size-class distribution are mainly caused by different preparation techniques and are not related to vegetation-type variation. At all three sites, the area and number concentrations of charcoal particles are highly correlated in standard pollen slides; 82–83% of the variability of the charcoal-area concentration can be explained by the particle-number concentration. Comparisons between predicted and measured area concentrations show that regression equations linking charcoal number and area concentrations can be used across sites as long as the same pollen-preparation technique is used. Thus it is concluded that it is unnecessary to measure charcoal areas in standard pollen slides – a time-consuming and tedious process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a new ultrafast pulse reconstruction modality that is somewhat reminiscent of frequency-resolved optical gating but uses a modified setup and a conceptually different reconstruction algorithm that is derived from ptychography. Even though it is a second-order correlation scheme, it shows no time ambiguity. Moreover, the number of spectra to record is considerably smaller than in most other related schemes which, together with a robust algorithm, leads to extremely fast convergence of the reconstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a new attosecond pulse reconstruction modality which uses an algorithm that is derived from ptychography. In contrast to other methods, energy and delay sampling are not correlated, and as a result, the number of electron spectra to record is considerably smaller. Together with the robust algorithm, this leads to a more precise and fast convergence of the reconstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of landscapes crucially depends on the climate history. This is particularly evident in South America where landscape responses to orbital climate shifts have been well documented. However, while most studies have focused on inferring temperature variations from paleoclimate proxy data, estimates of water budget changes have been complicated because of a lack of adequate physical information. Here, we present a methodology and related results, which allowed us to extract water discharge values from the sedimentary record of the 40 Ka-old fluvial terrace deposits in the Pisco valley, western Peru. In particular, this valley hosts a Quaternary cut-and-fill succession that we used, in combination with beryllium-10 (10Be)-based sediment flux, gauging records, channel geometries and grain size measurements, to quantitatively assess sediment and water discharge values c. 40 Ka ago in relation to present-day conditions. We compare these discharge estimates to the discharge regime of the modern Pisco River and find that the water discharge of the paleo-Pisco River, during the Minchin pluvial period c. 40 Ka ago, was c. 7–8 times greater than the modern Pisco River if considering the mean and the maximum water discharge. In addition, the calculations show that inferred water discharge estimates are mainly dependent on channel gradients and grain size values, and to a lesser extent on channel width measures. Finally, we found that the c. 40 Ka-old Minchin terrace material was poorer sorted than the modern deposits, which might reflect that sediment transport during the past period was characterized by a larger divergence from equal mobility compared to the modern situation. In summary, the differences in grain size distribution and inferred water discharge estimates between the modern and the paleo-Pisco River suggests that the 40 Ka-old Minchin period was characterized by a wetter climate and more powerful flood events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter proposed a personalized X-ray reconstruction-based planning and post-operative treatment evaluation framework called iJoint for advancing modern Total Hip Arthroplasty (THA). Based on a mobile X-ray image calibration phantom and a unique 2D-3D reconstruction technique, iJoint can generate patient-specific models of hip joint by non-rigidly matching statistical shape models to the X-ray radiographs. Such a reconstruction enables a true 3D planning and treatment evaluation of hip arthroplasty from just 2D X-ray radiographs whose acquisition is part of the standard diagnostic and treatment loop. As part of the system, a 3D model-based planning environment provides surgeons with hip arthroplasty related parameters such as implant type, size, position, offset and leg length equalization. With this newly developed system, we are able to provide true 3D solutions for computer assisted planning of THA using only 2D X-ray radiographs, which is not only innovative but also cost-effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GOAL: In the following, we will present a newly developed X-ray calibration phantom and its integration for 2-D/3-D pelvis reconstruction and subsequent automatic cup planning. Two different planning strategies were applied and evaluated with clinical data. METHODS: Two different cup planning methods were investigated: The first planning strategy is based on a combined pelvis and cup statistical atlas. Thereby, the pelvis part of the combined atlas is matched to the reconstructed pelvis model, resulting in an optimized cup planning. The second planning strategy analyzes the morphology of the reconstructed pelvis model to determine the best fitting cup implant. RESULTS: The first planning strategy was compared to 3-D CT-based planning. Digitally reconstructed radiographs of THA patients with differently severe pathologies were used to evaluate the accuracy of predicting the cup size and position. Within a discrepancy of one cup size, the size was correctly identified in 100% of the cases for Crowe type I datasets and in 77.8% of the cases for Crowe type II, III, and IV datasets. The second planning strategy was analyzed with respect to the eventually implanted cup size. In seven patients, the estimated cup diameter was correct within one cup size, while the estimation for the remaining five patients differed by two cup sizes. CONCLUSION: While both planning strategies showed the same prediction rate with a discrepancy of one cup size (87.5%), the prediction of the exact cup size was increased for the statistical atlas-based strategy (56%) in contrast to the anatomically driven approach (37.5%). SIGNIFICANCE: The proposed approach demonstrated the clinical validity of using 2-D/3-D reconstruction technique for cup planning.