275 resultados para Organ-transplantation
Resumo:
In some patients with acute respiratory failure, the native lungs do not recover during extracorporeal membrane oxygenation (ECMO), or complications occur that preclude the meaningful continuation of ECMO therapy. In such cases, emergency lung transplantation (LTx) represents the only therapeutic alternative. Between May 1988 and April 1993, the authors have performed LTx after ECMO support in five of 111 lung or heart-lung transplantations (4.5%). Two patients presented with early graft failure after unilateral LTx. In these patients, ECMO was used as a bridging device to unilateral re-LTx for 1, resp. 11 days. One patient died 6 months post-operatively from chronic rejection; the other underwent a third LTx and is doing well after 42 months. In three further patients already treated with ECMO for 5 to 12 days for ARDS (n = 2) or acute respiratory failure after liver and kidney transplantation, the native lungs did not recover (n = 2) or pulmonary hemorrhage developed. The last patient (unilateral LTx) and one of the former (bilateral LTx for ARDS) are long-term survivors (12, 30 months). The remaining patient (unilateral LTx for ARDS) had severe multiorgan failure at the time of his operation and died intraoperatively. The authors conclude that ECMO no longer represents a contraindication to subsequent LTx. Their results also support the continued investigation of this combined therapeutic approach.
Resumo:
Prolongation of the safe period of ischemia of the heart is an efficient way to overcome donor organ shortage, as demonstrated in renal and hepatic transplantation. We present the results of a prospective, randomized study comparing preservation with University of Wisconsin solution (UWS) versus St. Thomas' Hospital solution (STS) in clinical heart transplantation. A total of 39 patients were enrolled in the study (n = 20 for UWS and n = 19 for STS). Hemodynamic, electron microscopic, and biochemical evaluation did not reveal any significant differences in postoperative myocardial performance. Only the number of intraoperative defibrillations (0.82 for UWS versus 1.7 for STS) and the rhythm stability after reperfusion (13/20 UWS hearts versus 6/19 STS hearts in sinus rhythm) were significantly different. Heart preservation with UWS and STS appears to be of comparable efficacy at mean ischemic times of less than 4 hours.
Resumo:
Regular preoperative application of corticosteroids has been considered as a contraindication to lung transplantation for fear of an increased risk of postoperative morbidity and mortality. Recently, however, we have accepted patients for transplantation in whom treatment with steroid medication could not be terminated preoperatively. Up to February 1991, 27 unilateral and bilateral transplantations in 26 patients were analyzed. Corticosteroid therapy was discontinued at least three months prior to transplantation in 13 patients (group 1), whereas in 14 cases, the patients continued their daily corticosteroid therapy to the time of transplantation (prednisolone, 0.1 to 0.3 mg/kg/day; group 2). There were no significant differences between the groups with respect to sex, age, diagnosis, or type of transplantation. One limited bronchial dehiscence occurred; the incidence of postoperative bronchial stenosis was identical in both cohorts; one patient died in each group. In conclusion, no increased morbidity or mortality could be found following lung transplantation with regular preoperative administration of prednisolone up to 0.3 mg/kg/day. Thus, patients who cannot be weaned from their steroid medication but who otherwise are acceptable candidates should not be excluded from lung transplantation.
Resumo:
A severe adult respiratory distress syndrome after bilateral lung contusion was successfully treated by extracorporeal membrane oxygenation and subsequent double-lung transplantation in a 19-year-old man. The patient is fully rehabilitated 1 year after transplantation.
Resumo:
Replacement of the heart and both lungs or single lung transplantation has been performed in a few cases of terminal (cardio) pulmonary disease in childhood. It remains unclear whether pulmonary allografts will meet the demands of a growing organism. Six domestic pigs (mean body weight, 24 kg) underwent left lung transplantation from donors of equal weight. Immunosuppression consisted of cyclosporine, azathioprine, and corticosteroids. After the pigs doubled their body weight, growth of the lung was assessed by bronchography and pulmonary angiography. In transplant animals it took 11 weeks (normal animals, 6 weeks) for their weight to double. At that time, the bronchial tree showed similar growth when compared with nontransplant animals of equal weight. The diameter of the left lower lobe bronchus (9.2 +/- 0.4 mm) was significantly greater than that of animals of 24 kg body weight (7.5 +/- 0.3 mm; p less than 0.01) but comparable to that of normal pigs of similar weight (9.0 +/- 0.5 mm). The same applied for length of the left lower lobe bronchus (transplants, 95 +/- 6.7 mm; controls 24 kg, 67 +/- 2 mm [p less than 0.01]; controls 48 kg, 93 +/- 3 mm). Similar growth tendencies were observed in the pulmonary vascular tree. The diameter of the left lower lobe artery was 9.4 +/- 98 mm in 48 kg transplant pigs, compared with 9.7 +/- 1.2 mm in 24 kg control pigs and 8.5 +/- 0.8 mm in 48 kg control pigs. In one case of recurrent severe pulmonary rejection, the lung did not grow. We conclude from this study that growth is retarded by immunosuppression.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Heart and lung transplantation has been performed in cases of end-stage cardiopulmonary disease in infants. Nevertheless, it still remains unclear whether lung allografts adjust to a growing organism. In 6 young domestic pigs unilateral left lung allotransplantation was performed. Immunosuppression consisted of a triple drug therapy including cyclosporine, azathioprine, and corticosteroids. Lung growth was studied by using bronchography, pulmonary angiography, and lung histology. After 11 weeks the transplanted animals had doubled their body weight from 24 kg to 48 kg. Non-transplanted animals in contrast doubled their weight within only 6 weeks. The growth retardation was attributed to the immunosuppressive therapy. The bronchial tree and pulmonary vasculature of lung allografts showed a similar growth potential to non-transplanted lungs in animals of equivalent body weight. In one case of recurrent severe rejection of the lung no growth was observed. Therefore it was concluded that lung allografts grow adequately according to the development of the recipient organism. Lung transplantation in children does not seem to be restricted by a limited growth potential of the graft.
Resumo:
The occurrence of severe graft failure after lung transplantation which appears refractory to conventional treatment represents a difficult situation with regard to the therapeutic strategies available. Of 17 patients undergoing single lung transplantation at our center, 2 developed early graft failure. In both, temporary artificial cardiopulmonary support by means of extracorporeal membrane oxygenation became necessary as a bridge to retransplantation. Both patients were successfully retransplanted after 8 h and 232 h, respectively, of extra-corporeal support. Postoperatively, there was a variety of complications. The first patient completely recovered from temporary severe cerebral dysfunction diagnosed as "locked-in syndrome". She was discharged from hospital on the 93rd postoperative day and remains alive and well 10 months after her operation. The other patient recovered well early after retransplantation. Later, however, airway problems developed, requiring the implantation of endotracheal stents. Cachexia and several episodes of viral pneumonia contributed to the progressive deterioration of her clinical status. She finally died after being hospitalized for 5 months after the original operation. These two cases illustrate the feasibility of using extracorporeal membrane oxygenation as a bridge to pulmonary transplantation.
Resumo:
Direct revascularization of a bronchial artery has been proposed as a measure to alleviate the problem of bronchial ischemia after lung transplantation. To assess the effect of restoration of arterial blood flow to the transplanted bronchus, bronchial mucosal blood flow was measured in a model of modified unilateral lung transplantation in pigs. Laser Doppler velocimetry (LDV) and radioisotope studies using radio-labeled erythrocytes (RI) were used to measure blood flow at the donor main carina (DC) and upper lobe carina (DUC) after 3 h of reperfusion. The recipient carina was used as a reference point; values obtained by LDV and RI were expressed as percentage of blood flow at the recipient carina. Two groups of animals were studied. In group 1 (n = 6) standard unilateral transplantation was performed; in group 2 (n = 6) a left bronchial artery was reimplanted into the descending thoracic aorta of the recipient. No differences were observed between the two groups with respect to preoperative or postoperative gas exchange or hemodynamics. In group 1, bronchial blood flow at the DC was 37.6 +/- 2.2% (LDV) and 44.1 +/- 14.8% (RI) of reference blood flow. At the DUC, blood flow was 54.9 +/- 7.7% (LDV) and 61.6 +/- 25.7% (RI) of normal flow. In group 2, blood flow was increased at the DC as measured by LDV (55.3 +/- 17.1%; p less than 0.05) and by RI (60.8 +/- 25.3%; p less than 0.2). A similar increase was found at the DUC (LDV: 81.8 +/- 19.3%; p less than 0.05; RI: 88.6 +/- 31.0%; p less than 0.2). It is concluded that there is a significant gradient of blood flow from intra- to extrapulmonary airways after lung transplantation. Reimplantation of a bronchial artery results in significant improvement of graft bronchial blood flow. Restoration of bronchial perfusion to normal levels, however, cannot be achieved, suggesting a possible defect in the microcirculation of the donor airways.
Resumo:
INTRODUCTION: Surgical treatment of renal artery aneurysms is inevitably associated with temporary renal artery occlusion and risk of ischemic injury. We present a technique for renal artery grafting and aneurysm exclusion without interrupting renal blood flow. REPORT: A symptomatic renal artery aneurysm was bypassed with a venous graft between the abdominal aorta and the very distal renal artery utilizing a distal anastomotic device without interruption of renal blood flow. The aneurysm was then excluded by means of hemostatic clips. CONCLUSION: The presented surgical technique offers the major advantage of avoiding organ ischemia and accelerating the surgical procedure.
Resumo:
We applied predicted vital capacity to chest size matching between donor and recipient in lung transplantation to 15 single-lung transplant recipients with pulmonary fibrosis and to 20 double-lung transplant recipients with emphysema or non-emphysema. The predicted vital capacity of the donor was significantly correlated with the predicted vital capacity of the recipient both in double-lung transplantation (r = 0.79, p = 0.001) and single-lung transplantation (r = 0.71, p = 0.003). In double-lung transplantation, the post-transplant vital capacity was correlated with the predicted vital capacity of the recipient (r = 0.74, p = 0.002). Emphysema patients and non-emphysema patients contributed equally to this correlation. In left single lung transplantation, there was a weak correlation between the post-transplant vital capacity and the predicted vital capacity of the donor in the allograft (r = 0.57, p = 0.1095). In right single lung transplantation, the post-transplant vital capacity of the allograft tended to be correlated with the predicted vital capacity of recipient (r = 0.77, p = 0.0735). We concluded that donors were actually selected based on the comparison of predicted vital capacity between donor and recipient. In double-lung transplantation, the post-transplant vital capacity was limited by the recipient's normal thoracic volume and was not influenced by underlying pulmonary disease. In single-lung transplantation with pulmonary fibrosis, the allograft transplanted in the left chest could expand to its own size, and the allograft transplanted in the right chest could expand to the recipient's normal thoracic volume as in double-lung transplantation.
Resumo:
BACKGROUND: Lung volume reduction (LVR) surgery is an effective and organ-preserving treatment option for patients suffering from severe dyspnea due to endstage emphysema. METHOD: Resection of functionally inactive lung parenchyma reduces over-inflation and restores the elastic recoil of the lungs. Thus it results in improvement of dyspnea, mobility and pulmonary function. Patient selection is crucial. Of simliar importance is pulmonary rehabilitation, as well as sufficient expertise in the treatment of endstage chronic respiratory failure. RESULTS AND CONCLUSION: The in-hospital morbidity and mortality after LVR are acceptable (0 to 5%) and the good results seem to last at least 18 to 24 months. LVR can be offered to selected patients either as an alternative or as bridge to lung transplantation.
Resumo:
BACKGROUND: The question whether patients suffering from end-stage emphysema who are candidates for lung transplantation should be treated with a single lung or with a double lung transplantation is still unanswered. METHODS: We reviewed 24 consecutive lung transplant procedures, comparing the results of 6 patients with an unilateral and 17 with a bilateral transplantation. PATIENTS AND RESULTS: After bilateral transplantation the patients showed a trend towards better blood gas exchange with shorter time on ventilator and intensive care compared patients after unilateral procedure. Three-year-actuarial survival was higher in the group after bilateral transplantation (83% versus 67%). There was a continuous improvement in pulmonary function in both groups during the first months after transplantation. Vital capacity and forced exspiratory ventilation therapies during the first second were significantly higher in the bilateral transplant group. CONCLUSION: Both unilateral and bilateral transplantation are feasible for patients with end-stage emphysema. Bilateral transplantation results in better pulmonary reserve capacity and faster rehabilitation.
Resumo:
BACKGROUND: Exercise capacity after heart transplantation (HTx) remains limited despite normal left ventricular systolic function of the allograft. Various clinical and haemodynamic parameters are predictive of exercise capacity following HTx. However, the predictive significance of chronotropic competence has not been demonstrated unequivocally despite its immediate relevance for cardiac output. AIMS: This study assesses the predictive value of various clinical and haemodynamic parameters for exercise capacity in HTx recipients with complete chronotropic competence evolving within the first 6 postoperative months. METHODS: 51 patients were enrolled in this exercise study. Patients were included when at least >6 months after HTx and without negative chronotropic medication or factors limiting exercise capacity such as significant transplant vasculopathy or allograft rejection. Clinical parameters were obtained by chart review, haemodynamic parameters from current cardiac catheterisation, and exercise capacity was assessed by treadmill stress testing. A stepwise multiple regression model analysed the proportion of the variance explained by the predictive parameters. RESULTS: The mean age of these 51 HTx recipients was 55.4 +/- 13.2 yrs on inclusion, 42 pts were male and the mean time interval after cardiac transplantation was 5.1 +/- 2.8 yrs. Five independent predictors explained 47.5% of the variance observed for peak exercise capacity (adjusted R2 = 0.475). In detail, heart rate response explained 31.6%, male gender 5.2%, age 4.1%, pulmonary vascular resistance 3.7%, and body-mass index 2.9%. CONCLUSION: Heart rate response is one of the most important predictors of exercise capacity in HTx recipients with complete chronotropic competence and without relevant transplant vasculopathy or acute allograft rejection.
Resumo:
OBJECTIVE: The aim of the present pilot study is to show initial results of a multimodal approach using clinical scoring, morphological magnetic resonance imaging (MRI) and biochemical T2-relaxation and diffusion-weighted imaging (DWI) in their ability to assess differences between cartilage repair tissue after microfracture therapy (MFX) and matrix-associated autologous chondrocyte transplantation (MACT). METHOD: Twenty patients were cross-sectionally evaluated at different post-operative intervals from 12 to 63 months after MFX and 12-59 months after MACT. The two groups were matched by age (MFX: 36.0+/-10.4 years; MACT: 35.1+/-7.7 years) and post-operative interval (MFX: 32.6+/-16.7 months; MACT: 31.7+/-18.3 months). After clinical evaluation using the Lysholm score, 3T-MRI was performed obtaining the MR observation of cartilage repair tissue (MOCART) score as well as T2-mapping and DWI for multi-parametric MRI. Quantitative T2-relaxation was achieved using a multi-echo spin-echo sequence; semi-quantitative diffusion-quotient (signal intensity without diffusion-weighting divided by signal intensity with diffusion weighting) was prepared by a partially balanced, steady-state gradient-echo pulse sequence. RESULTS: No differences in Lysholm (P=0.420) or MOCART (P=0.209) score were observed between MFX and MACT. T2-mapping showed lower T2 values after MFX compared to MACT (P=0.039). DWI distinguished between healthy cartilage and cartilage repair tissue in both procedures (MFX: P=0.001; MACT: P=0.007). Correlations were found between the Lysholm and the MOCART score (Pearson: 0.484; P=0.031), between the Lysholm score and DWI (Pearson:-0.557; P=0.011) and a trend between the Lysholm score and T2 (Person: 0.304; P=0.193). CONCLUSION: Using T2-mapping and DWI, additional information could be gained compared to clinical scoring or morphological MRI. In combination clinical, MR-morphological and MR-biochemical parameters can be seen as a promising multimodal tool in the follow-up of cartilage repair.