295 resultados para Ophthalmic surgery
Resumo:
Using navigation systems in general orthopaedic surgery and, in particular, knee replacement is becoming more and more accepted. This paper describes the basic technological concepts of modern computer assisted surgical systems. It explains the variation in currently available systems and outlines research activities that will potentially influence future products. In general, each navigation system is defined by three components: (1) the therapeutic object is the anatomical structure that is operated on using the navigation system, (2) the virtual object represents an image of the therapeutic object, with radiological images or computer generated models potentially being used, and (3) last but not least, the navigator acquires the spatial position and orientation of instruments and anatomy thus providing the necessary data to replay surgical action in real-time on the navigation system's screen.
Resumo:
2D-3D registration of pre-operative 3D volumetric data with a series of calibrated and undistorted intra-operative 2D projection images has shown great potential in CT-based surgical navigation because it obviates the invasive procedure of the conventional registration methods. In this study, a recently introduced spline-based multi-resolution 2D-3D image registration algorithm has been adapted together with a novel least-squares normalized pattern intensity (LSNPI) similarity measure for image guided minimally invasive spine surgery. A phantom and a cadaver together with their respective ground truths were specially designed to experimentally assess possible factors that may affect the robustness, accuracy, or efficiency of the registration. Our experiments have shown that it is feasible for the assessed 2D-3D registration algorithm to achieve sub-millimeter accuracy in a realistic setup in less than one minute.
Resumo:
OBJECTIVE: To find out whether conventional periapical radiographs can be used to determine the risk of creating an oroantral communication (OAC) while performing periapical surgery on maxillary premolars and molars. STUDY DESIGN: One hundred thirteen periapical radiographs of maxillary premolars and molars with periapical radiolucencies indicating chronic apical periodontitis were retrospectively analyzed and classified. The surgery reports were evaluated for occurrence of perforation of the maxillary sinus and postoperative complications. RESULTS: Perforation of the sinus membrane (also referred to as the Schneiderian membrane) occurred in 12 cases (9.6%). Exposure of the membrane without rupture occurred in 15 cases (12%). It was found that the distance between the apex or the periapical lesion and the sinus floor did not serve as a predictor of a possible sinus membrane rupture. On the other hand, if the radiograph showed a distinct distance between the lesion and the sinus floor, there was an 82.5% probability that OAC would not occur. Additionally, a blurred radiographic outline of the periapical lesion did not indicate an increased risk of sinus membrane rupture. CONCLUSION: Conventional periapical radiographs cannot be used as predictors for perforation of the maxillary sinus during periapical surgery. However, radiographs with a specific distance between the periapical lesion and the sinus floor point toward a very low risk of accidental sinus perforation during periapical surgery.