221 resultados para nuclear magnetic resonance imaging


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Lesion volume on diffusion-weighted magnetic resonance imaging (DWI) before acute stroke therapy is a predictor of outcome. Therefore, patients with large volumes are often excluded from therapy. The aim of this study was to analyze the impact of endovascular treatment in patients with large DWI lesion volumes (>70 mL). METHODS Three hundred seventy-two patients with middle cerebral or internal carotid artery occlusions examined with magnetic resonance imaging before treatment since 2004 were included. Baseline data and 3 months outcome were recorded prospectively. DWI lesion volumes were measured semiautomatically. RESULTS One hundred five patients had lesions >70 mL. Overall, the volume of DWI lesions was an independent predictor of unfavorable outcome, survival, and symptomatic intracerebral hemorrhage (P<0.001 each). In patients with DWI lesions >70 mL, 11 of 31 (35.5%) reached favorable outcome (modified Rankin scale score, 0-2) after thrombolysis in cerebral infarction 2b-3 reperfusion in contrast to 3 of 35 (8.6%) after thrombolysis in cerebral infarction 0-2a reperfusion (P=0.014). Reperfusion success, patient age, and DWI lesion volume were independent predictors of outcome in patients with DWI lesions >70 mL. Thirteen of 66 (19.7%) patients with lesions >70 mL had symptomatic intracerebral hemorrhage with a trend for reduced risk with avoidance of thrombolytic agents. CONCLUSIONS There was a growing risk for poor outcome and symptomatic intracerebral hemorrhage with increasing pretreatment DWI lesion volumes. Nevertheless, favorable outcome was achieved in every third patient with DWI lesions >70 mL after successful endovascular reperfusion, whereas after poor or failed reperfusion, outcome was favorable in only every 12th patient. Therefore, endovascular treatment might be considered in patients with large DWI lesions, especially in younger patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE In traumatic brain injury, diffusion-weighted and diffusion tensor imaging of the brain are essential techniques for determining the pathology sustained and the outcome. Postmortem cross-sectional imaging is an established adjunct to forensic autopsy in death investigation. The purpose of this prospective study was to evaluate postmortem diffusion tensor imaging in forensics for its feasibility, influencing factors and correlation to the cause of death compared with autopsy. METHODS Postmortem computed tomography, magnetic resonance imaging, and diffusion tensor imaging with fiber tracking were performed in 10 deceased subjects. The Likert scale grading of colored fractional anisotropy maps was correlated to the body temperature and intracranial pathology to assess the diagnostic feasibility of postmortem diffusion tensor imaging and fiber tracking. RESULTS Optimal fiber tracking (>15,000 fiber tracts) was achieved with a body temperature at 10°C. Likert scale grading showed no linear correlation (P > 0.7) to fiber tract counts. No statistically significant correlation between total fiber count and postmortem interval could be observed (P = 0.122). Postmortem diffusion tensor imaging and fiber tracking allowed for radiological diagnosis in cases with shearing injuries but was impaired in cases with pneumencephalon and intracerebral mass hemorrhage. CONCLUSIONS Postmortem diffusion tensor imaging with fiber tracking provides an exceptional in situ insight "deep into the fibers" of the brain with diagnostic benefit in traumatic brain injury and axonal injuries in the assessment of the underlying cause of death, considering influencing factors for optimal imaging technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid further development of computed tomography (CT) and magnetic resonance imaging (MRI) induced the idea to use these techniques for postmortem documentation of forensic findings. Until now, only a few institutes of forensic medicine have acquired experience in postmortem cross-sectional imaging. Protocols, image interpretation and visualization have to be adapted to the postmortem conditions. Especially, postmortem alterations, such as putrefaction and livores, different temperature of the corpse and the loss of the circulation are a challenge for the imaging process and interpretation. Advantages of postmortem imaging are the higher exposure and resolution available in CT when there is no concern for biologic effects of ionizing radiation, and the lack of cardiac motion artifacts during scanning. CT and MRI may become useful tools for postmortem documentation in forensic medicine. In Bern, 80 human corpses underwent postmortem imaging by CT and MRI prior to traditional autopsy until the month of August 2003. Here, we describe the imaging appearance of postmortem alterations--internal livores, putrefaction, postmortem clotting--and distinguish them from the forensic findings of the heart, such as calcification, endocarditis, myocardial infarction, myocardial scarring, injury and other morphological alterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Docetaxel is one of the most frequently used drugs to treat breast cancer. However, resistance or incomplete response to docetaxel is a major challenge. The aim of this study was to utilize MR metabolomics to identify potential biomarkers of docetaxel resistance in a mouse model for BRCA1-mutated breast cancer. METHODOLOGY High resolution magic angle spinning (HRMAS) (1)H MR spectroscopy was performed on tissue samples obtained from docetaxel-sensitive or -resistant BRCA1-mutated mammary tumors in mice. Measurements were performed on samples obtained before treatment and at 1-2, 3-5 and 6-7 days after a 25 mg/kg dose of docetaxel. The MR spectra were analyzed by multivariate analysis, followed by analysis of the signals of individual compounds by peak fitting and integration with normalization to the integral of the creatine signal and of all signals between 2.9 and 3.6 ppm. RESULTS The HRMAS spectra revealed significant metabolic differences between sensitive and resistant tissue samples. In particular choline metabolites were higher in resistant tumors by more than 50% with respect to creatine and by more than 30% with respect to all signals between 2.9 and 3.6 ppm. Shortly after treatment (1-2 days) the normalized choline metabolite levels were significantly increased by more than 30% in the sensitive group coinciding with the time of highest apoptotic activity induced by docetaxel. Thereafter, choline metabolites in these tumors returned towards pre-treatment levels. No change in choline compounds was observed in the resistant tumors over the whole time of investigation. CONCLUSIONS Relative tissue concentrations of choline compounds are higher in docetaxel resistant than in sensitive BRCA1-mutated mouse mammary tumors, but in the first days after docetaxel treatment only in the sensitive tumors an increase of these compounds is observed. Thus both pre- and post-treatment tissue levels of choline compounds have potential to predict response to docetaxel treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffusion-weighted imaging (DWI) is an established diagnostic tool with regards to the central nervous system (CNS) and research into its application in the musculoskeletal system has been growing. It has been shown that DWI has utility in differentiating vertebral compression fractures from malignant ones, assessing partial and complete tears of the anterior cruciate ligament (ACL), monitoring tumor response to therapy, and characterization of soft-tissue and bone tumors. DWI is however less useful in differentiating malignant vs. infectious processes. As of yet, no definitive qualitative or quantitative properties have been established due to reasons ranging from variability in acquisition protocols to overlapping imaging characteristics. Even with these limitations, DWI can still provide clinically useful information, increasing diagnostic accuracy and improving patient management when magnetic resonance imaging (MRI) findings are inconclusive. The purpose of this article is to summarize recent research into DWI applications in the musculoskeletal system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To investigate if image registration of diffusion tensor imaging (DTI) allows omitting respiratory triggering for both transplanted and native kidneys MATERIALS AND METHODS: Nine kidney transplant recipients and eight healthy volunteers underwent renal DTI on a 3T scanner with and without respiratory triggering. DTI images were registered using a multimodal nonrigid registration algorithm. Apparent diffusion coefficient (ADC), the contribution of perfusion (FP ), and the fractional anisotropy (FA) were determined. Relative root mean square errors (RMSE) of the fitting and the standard deviations of the derived parameters within the regions of interest (SDROI ) were evaluated as quality criteria. RESULTS Registration significantly reduced RMSE in all DTI-derived parameters of triggered and nontriggered measurements in cortex and medulla of both transplanted and native kidneys (P < 0.05 for all). In addition, SDROI values were lower with registration for all 16 parameters in transplanted kidneys (14 of 16 SDROI values were significantly reduced, P < 0.04) and for 15 of 16 parameters in native kidneys (9 of 16 SDROI values were significantly reduced, P < 0.05). Comparing triggered versus nontriggered DTI in transplanted kidneys revealed no significant difference for RMSE (P > 0.14) and for SDROI (P > 0.13) of all parameters. In contrast, in native kidneys relative RMSE from triggered scans were significantly lower than those from nontriggered scans (P < 0.02), while SDROI was slightly higher in triggered compared to nontriggered measurements in 15 out of 16 comparisons (significantly for two, P < 0.05). CONCLUSION Registration improves the quality of DTI in native and transplanted kidneys. Diffusion parameters in renal allografts can be measured without respiratory triggering. In native kidneys, respiratory triggering appears advantageous. J. Magn. Reson. Imaging 2016.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT Radiolabelled choline positron emission tomography has changed the management of prostate cancer patients. However, new emerging radiopharmaceutical agents, like radiolabelled prostate specific membrane antigen, and new promising hybrid imaging will begin new challenges in the diagnostic field. OBJECTIVE The continuous evolution in nuclear medicine has led to the improvement in the detection of recurrent prostate cancer (PCa), particularly distant metastases. New horizons have been opened for radiolabelled choline positron emission tomography (PET)/computed tomography (CT) as a guide for salvage therapy or for the assessment of systemic therapies. In addition, new tracers and imaging tools have been recently tested, providing important information for the management of PCa patients. Herein we discuss: (1) the available evidence in literature on radiolabelled choline PET and their recent indications, (2) the role of alternative radiopharmaceutical agents, and (3) the advantages of a recent hybrid imaging device (PET/magnetic resonance imaging) in PCa. EVIDENCE ACQUISITION Data from recently published (2010-2015), original articles concerning the role of choline PET/CT, new emerging radiotracers, and a new imaging device are analysed. This review is reported according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. EVIDENCE SYNTHESIS In the restaging phase, the detection rate of choline PET varies between 4% and 97%, mainly depending on the site of recurrence and prostate-specific antigen levels. Both 68gallium (68Ga)-prostate specific membrane antigen and 18F-fluciclovine are shown to be more accurate in the detection of recurrent disease as compared with radiolabelled choline PET/CT. Particularly, Ga68-PSMA has a detection rate of 50% and 68%, respectively for prostate-specific antigen levels < 0.5ng/ml and 0.5-2ng/ml. Moreover, 68Ga- PSMA PET/magnetic resonance imaging demonstrated a particularly higher accuracy in detecting PCa than PET/CT. New tracers, such as radiolabelled bombesin or urokinase-type plasminogen activator receptor, are promising, but few data in clinical practice are available today. CONCLUSIONS Some limitations emerge from the published papers, both for radiolabelled choline PET/CT and also for new radiopharmaceutical agents. Efforts are still needed to enhance the impact of published data in the world of oncology, in particular when new radiopharmaceuticals are introduced into the clinical arena. PATIENT SUMMARY In the present review, the authors summarise the last evidences in clinical practice for the assessment of prostate cancer, by using nuclear medicine modalities, like positron emission tomography/computed tomography and positron emission tomography/magnetic resonance imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE The aim of this study was to compare quantitative and semiquantitative parameters (signal-to-noise ratio [SNR], contrast-to-noise ratio [CNR], image quality, diagnostic confidence) from a standard brain magnetic resonance imaging examination encompassing common neurological disorders such as demyelinating disease, gliomas, cerebrovascular disease, and epilepsy, with comparable sequence protocols and acquisition times at 3 T and at 7 T. MATERIALS AND METHODS Ten healthy volunteers and 4 subgroups of 40 patients in total underwent comparable magnetic resonance protocols with standard diffusion-weighted imaging, 2D and 3D turbo spin echo, 2D and 3D gradient echo and susceptibility-weighted imaging of the brain (10 sequences) at 3 T and 7 T. The subgroups comprised patients with either lesional (n = 5) or nonlesional (n = 4) epilepsy, intracerebral tumors (n = 11), demyelinating disease (n = 11) (relapsing-remitting multiple sclerosis [MS, n = 9], secondary progressive MS [n = 1], demyelinating disease not further specified [n = 1]), or chronic cerebrovascular disorders [n = 9]). For quantitative analysis, SNR and CNR were determined. For a semiquantitative assessment of the diagnostic confidence, a 10-point scale diagnostic confidence score (DCS) was applied. Two experienced radiologists with additional qualification in neuroradiology independently assessed, blinded to the field strength, 3 pathology-specific imaging criteria in each of the 4 disease groups and rated their diagnostic confidence. The overall image quality was semiquantitatively assessed using a 4-point scale taking into account whether diagnostic decision making was hampered by artifacts or not. RESULTS Without correction for spatial resolution, SNR was higher at 3 T except in the T2 SPACE 3D, DWI single shot, and DIR SPACE 3D sequences. The SNR corrected by the ratio of 3 T/7 T voxel sizes was higher at 7 T than at 3 T in 10 of 11 sequences (all except for T1 MP2RAGE 3D).In CNR, there was a wide variation between sequences and patient cohorts, but average CNR values were broadly similar at 3 T and 7 T.DCS values for all 4 pathologic entities were higher at 7 T than at 3 T. The DCS was significantly higher at 7 T for diagnosis and exclusion of cortical lesions in vascular disease. A tendency to higher DCS at 7 T for cortical lesions in MS was observed, and for the depiction of a central vein and iron deposits within MS lesions. Despite motion artifacts, DCS values were higher at 7 T for the diagnosis and exclusion of hippocampal sclerosis in mesial temporal lobe epilepsy (improved detection of the hippocampal subunits). Interrater agreement was 69.7% at 3 T and 93.3% at 7 T. There was no significant difference in the overall image quality score between 3 T and 7 T taking into account whether diagnostic decision making was hampered by artifacts or not. CONCLUSIONS Ultra-high-field magnetic resonance imaging at 7 T compared with 3 T yielded an improved diagnostic confidence in the most frequently encountered neurologic disorders. Higher spatial resolution and contrast were identified as the main contributory factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we compared contrast-enhanced ultrasound perfusion imaging with magnetic resonance perfusion-weighted imaging or perfusion computed tomography for detecting normo-, hypo-, and nonperfused brain areas in acute middle cerebral artery stroke. We performed high mechanical index contrast-enhanced ultrasound perfusion imaging in 30 patients. Time-to-peak intensity of 10 ischemic regions of interests was compared to four standardized nonischemic regions of interests of the same patient. A time-to-peak >3 s (ultrasound perfusion imaging) or >4 s (perfusion computed tomography and magnetic resonance perfusion) defined hypoperfusion. In 16 patients, 98 of 160 ultrasound perfusion imaging regions of interests of the ischemic hemisphere were classified as normal, and 52 as hypoperfused or nonperfused. Ten regions of interests were excluded due to artifacts. There was a significant correlation of the ultrasound perfusion imaging and magnetic resonance perfusion or perfusion computed tomography (Pearson`s chi-squared test 79.119, p < 0.001) (OR 0.1065, 95% CI 0.06-0.18). No perfusion in ultrasound perfusion imaging (18 regions of interests) correlated highly with diffusion restriction on magnetic resonance imaging (Pearson's chi-squared test 42.307, p < 0.001). Analysis of receiver operating characteristics proved a high sensitivity of ultrasound perfusion imaging in the diagnosis of hypoperfused area under the curve, (AUC = 0.917; p < 0.001) and nonperfused (AUC = 0.830; p < 0.001) tissue in comparison with perfusion computed tomography and magnetic resonance perfusion. We present a proof of concept in determining normo-, hypo-, and nonperfused tissue in acute stroke by advanced contrast-enhanced ultrasound perfusion imaging.