222 resultados para four-dimensional computed tomography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE Cochlear implants (CI) are standard treatment for prelingually deafened children and postlingually deafened adults. Computed tomography (CT) is the standard method for postoperative imaging of the electrode position. CT scans accurately reflect electrode depth and position, which is essential prior to use. However, routine CT examinations expose patients to radiation, which is especially problematic in children. We examined whether new CT protocols could reduce radiation doses while preserving diagnostic accuracy. METHODS To investigate whether electrode position can be assessed by low-dose CT protocols, a cadaveric lamb model was used because the inner ear morphology is similar to humans. The scans were performed at various volumetric CT dose-indexes CTDIvol)/kV combinations. For each constant CTDIvol the tube voltage was varied (i.e., 80, 100, 120 and 140kV). This procedure was repeated at different CTDIvol values (21mGy, 11mGy, 5.5mGy, 2.8mGy and 1.8mGy). To keep the CTDIvol constant at different tube voltages, the tube current values were adjusted. Independent evaluations of the images were performed by two experienced and blinded neuroradiologists. The criteria diagnostic usefulness, image quality and artifacts (scaled 1-4) were assessed in 14 cochlear-implanted cadaveric lamb heads with variable tube voltages. RESULTS Results showed that the standard CT dose could be substantially reduced without sacrificing diagnostic accuracy of electrode position. The assessment of the CI electrode position was feasible in almost all cases up to a CTDIvol of 2-3mGy. The number of artifacts did not increase for images within this dose range as compared to higher dosages. The extent of the artifacts caused by the implanted metal-containing CI electrode does not depend on the radiation dose and is not perceptibly influenced by changes in the tube voltage. Summarizing the evaluation of the CI electrode position is possible even at a very low radiation dose. CONCLUSIONS CT imaging of the temporal bone for postoperative electrode position control of the CI is possible with a very low and significantly radiation dose. The tube current-time product and voltage can be reduced by 50% without increasing artifacts. Low-dose postoperative CT scans are sufficient for localizing the CI electrode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE The preservation of residual hearing in cochlear implantation opens the door for optimal functional results. This atraumatic surgical technique requires training; however, the traditional human cadaveric temporal bones have become less available or unattainable in some institutions. This study investigates the suitability of an alternative model, using cadaveric lamb temporal bone, for surgical training of atraumatic round window electrode insertion. INTERVENTION A total of 14 lamb temporal bones were dissected for cochlear implantation by four surgeons. After mastoidectomy, visualization, and drilling of the round window niche, an atraumatic round window insertion of a Medel Flex24 electrode was performed. Electrode insertion depth and position were verified by computed tomography scans. MAIN OUTCOME MEASURE All cochleas were successfully implanted using the atraumatic round window approach; however, surgical access through the mastoid was substantially different when compared human anatomy. The mean number of intracochlear electrode contacts was 6.5 (range, 4-11) and the mean insertion depth 10.4 mm (range, 4-20 mm), which corresponds to a mean angular perimodiolar insertion depth of 229 degrees (range 67-540°). Full insertion of the electrode was not possible because of the smaller size of the lamb cochlea in comparison to that of the human. CONCLUSION The lamb temporal bone model is well suited as a training model for atraumatic cochlear implantation at the level of the round window. The minimally pneumatized mastoid as well as the smaller cochlea can help prepare a surgeon for difficult cochlear implantations. Because of substantial differences to human anatomy, it is not an adequate training model for other surgical techniques such as mastoidectomy and posterior tympanotomy as well as full electrode insertion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES Left ventricular assist devices are an important treatment option for patients with heart failure alter the hemodynamics in the heart and great vessels. Because in vivo magnetic resonance studies of patients with ventricular assist devices are not possible, in vitro models represent an important tool to investigate flow alterations caused by these systems. By using an in vitro magnetic resonance-compatible model that mimics physiologic conditions as close as possible, this work investigated the flow characteristics using 4-dimensional flow-sensitive magnetic resonance imaging of a left ventricular assist device with outflow via the right subclavian artery as commonly used in cardiothoracic surgery in the recent past. METHODS An in vitro model was developed consisting of an aorta with its supra-aortic branches connected to a left ventricular assist device simulating the pulsatile flow of the native failing heart. A second left ventricular assist device supplied the aorta with continuous flow via the right subclavian artery. Four-dimensional flow-sensitive magnetic resonance imaging was performed for different flow rates of the left ventricular assist device simulating the native heart and the left ventricular assist device providing the continuous flow. Flow characteristics were qualitatively and quantitatively evaluated in the entire vessel system. RESULTS Flow characteristics inside the aorta and its upper branching vessels revealed that the right subclavian artery and the right carotid artery were solely supported by the continuous-flow left ventricular assist device for all flow rates. The flow rates in the brain-supplying arteries are only marginally affected by different operating conditions. The qualitative analysis revealed only minor effects on the flow characteristics, such as weakly pronounced vortex flow caused by the retrograde flow via the brachiocephalic artery. CONCLUSIONS The results indicate that, despite the massive alterations in natural hemodynamics due to the retrograde flow via the right subclavian and brachiocephalic arteries, there are no drastic consequences on the flow in the brain-feeding arteries and the flow characteristics in the ascending and descending aortas. It may be beneficial to adjust the operating condition of the left ventricular assist device to the residual function of the failing heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The aim of this study was to evaluate the validity and the inter- and intra-examiner reliability of panoramic-radiograph-driven findings of different maxillary sinus anatomic variations and pathologies, which had initially been prediagnosed by cone beam computed tomography (CBCT). Methods: After pairs of two-dimensional (2D) panoramic and three-dimensional (3D) CBCT images of patients having received treatment at the outpatient department had been screened, the predefinition of 54 selected maxillary sinus conditions was initially performed on CBCT images by two blinded consultants individually using a questionnaire that defined ten different clinically relevant findings. Using the identic questionnaire, these consultants performed the evaluation of the panoramic radiographs at a later time point. The results were analyzed for inter-imaging differences in the evaluation of the maxillary sinus between 2D and 3D imaging methods. Additionally, two resident groups (first year and last year of training) performed two diagnostic runs of the panoramic radiographs and results were analyzed for inter- and intra-observer reliability. Results: There is a moderate risk for false diagnosis of findings of the maxillary sinus if only panoramic radiography is used. Based on the ten predefined conditions, solely maxillary bone cysts penetrating into the sinus were frequently detected differently comparing 2D to 3D diagnostics. Additionally, on panoramic radiographs, the inter-observer comparison demonstrated that basal septa were significantly often rated differently and the intra-observer comparison showed a significant lack in reliability in detecting maxillary bone cysts penetrating into the sinus. Conclusions: Panoramic radiography provides the most information on the maxillary sinus, and it may be an adequate imaging method. However, particular findings of the maxillary sinus in panoramic imaging may be based on a rather examiner-dependent assessment. Therefore, a persistent and precise evaluation of specific conditions of the maxillary sinus may only be possible using CBCT because it provides additional information compared to panoramic radiography. This might be relevant for consecutive surgical procedures; consequently, we recommend CBCT if a precise preoperative evaluation is mandatory. However, higher radiation dose and costs of 3D imaging need to be considered. Keywords: Panoramic radiography; Cone beam computed tomography; Maxillary sinus; Inter-imaging method differences; Inter-examiner reliability; Intra-examiner reliability

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To evaluate a low-cost, inertial sensor-based surgical navigation solution for periacetabular osteotomy (PAO) surgery without the line-of-sight impediment. METHODS Two commercial inertial measurement units (IMU, Xsens Technologies, The Netherlands), are attached to a patient's pelvis and to the acetabular fragment, respectively. Registration of the patient with a pre-operatively acquired computer model is done by recording the orientation of the patient's anterior pelvic plane (APP) using one IMU. A custom-designed device is used to record the orientation of the APP in the reference coordinate system of the IMU. After registration, the two sensors are mounted to the patient's pelvis and acetabular fragment, respectively. Once the initial position is recorded, the orientation is measured and displayed on a computer screen. A patient-specific computer model generated from a pre-operatively acquired computed tomography scan is used to visualize the updated orientation of the acetabular fragment. RESULTS Experiments with plastic bones (eight hip joints) performed in an operating room comparing a previously developed optical navigation system with our inertial-based navigation system showed no statistically significant difference on the measurement of acetabular component reorientation. In all eight hip joints the mean absolute difference was below four degrees. CONCLUSION Using two commercially available inertial measurement units we show that it is possible to accurately measure the orientation (inclination and anteversion) of the acetabular fragment during PAO surgery and therefore to successfully eliminate the line-of-sight impediment that optical navigation systems have.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Femoroacetabular impingement (FAI) is a dynamic conflict of the hip defined by a pathological, early abutment of the proximal femur onto the acetabulum or pelvis. In the past two decades, FAI has received increasing focus in both research and clinical practice as a cause of hip pain and prearthrotic deformity. Anatomical abnormalities such as an aspherical femoral head (cam-type FAI), a focal or general overgrowth of the acetabulum (pincer-type FAI), a high riding greater or lesser trochanter (extra-articular FAI), or abnormal torsion of the femur have been identified as underlying pathomorphologies. Open and arthroscopic treatment options are available to correct the deformity and to allow impingement-free range of motion. In routine practice, diagnosis and treatment planning of FAI is based on clinical examination and conventional imaging modalities such as standard radiography, magnetic resonance arthrography (MRA), and computed tomography (CT). Modern software tools allow three-dimensional analysis of the hip joint by extracting pelvic landmarks from two-dimensional antero-posterior pelvic radiographs. An object-oriented cross-platform program (Hip2Norm) has been developed and validated to standardize pelvic rotation and tilt on conventional AP pelvis radiographs. It has been shown that Hip2Norm is an accurate, consistent, reliable and reproducible tool for the correction of selected hip parameters on conventional radiographs. In contrast to conventional imaging modalities, which provide only static visualization, novel computer assisted tools have been developed to allow the dynamic analysis of FAI pathomechanics. In this context, a validated, CT-based software package (HipMotion) has been introduced. HipMotion is based on polygonal three-dimensional models of the patient’s pelvis and femur. The software includes simulation methods for range of motion, collision detection and accurate mapping of impingement areas. A preoperative treatment plan can be created by performing a virtual resection of any mapped impingement zones both on the femoral head-neck junction, as well as the acetabular rim using the same three-dimensional models. The following book chapter provides a summarized description of current computer-assisted tools for the diagnosis and treatment planning of FAI highlighting the possibility for both static and dynamic evaluation, reliability and reproducibility, and its applicability to routine clinical use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES The aims of the study were to use cone beam computed tomography (CBCT) images of nasopalatine duct cysts (NPDC) and to calculate the diameter, surface area, and 3D-volume using a custom-made software program. Furthermore, any associations of dimensions of NPDC with age, gender, presence/absence of maxillary incisors/canines (MI/MC), endodontic treatment of MI/MC, presenting symptoms, and postoperative complications were evaluated. MATERIAL AND METHODS The study comprised 40 patients with a histopathologically confirmed NPDC. On preoperative CBCT scans, curves delineating the cystic borders were drawn in all planes and the widest diameter (in millimeter), surface area (in square millimeter), and volume (in cubic millimeter) were calculated. RESULTS The overall mean cyst diameter was 15 mm (range 7-47 mm), the mean cyst surface area 566 mm(2) (84-4,516 mm(2)), and the mean cyst volume 1,735 mm(3) (65-25,350 mm(3)). For 22 randomly allocated cases, a second measurement resulted in a mean absolute aberration of ±4.2 % for the volume, ±2.8 % for the surface, and ±4.9 % for the diameter. A statistically significant association was found for the CBCT determined cyst measurements and the need for preoperative endodontic treatment to MI/MC and for postoperative complications. CONCLUSION In the hands of a single experienced operator, the novel software exhibited high repeatability for measurements of cyst dimensions. Further studies are needed to assess the application of this tool for dimensional analysis of different jaw cysts and lesions including treatment planning. CLINICAL RELEVANCE Accurate radiographic information of the bone volume lost (osteolysis) due to expansion of a cystic lesion in three dimensions could help in personalized treatment planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT Radiolabelled choline positron emission tomography has changed the management of prostate cancer patients. However, new emerging radiopharmaceutical agents, like radiolabelled prostate specific membrane antigen, and new promising hybrid imaging will begin new challenges in the diagnostic field. OBJECTIVE The continuous evolution in nuclear medicine has led to the improvement in the detection of recurrent prostate cancer (PCa), particularly distant metastases. New horizons have been opened for radiolabelled choline positron emission tomography (PET)/computed tomography (CT) as a guide for salvage therapy or for the assessment of systemic therapies. In addition, new tracers and imaging tools have been recently tested, providing important information for the management of PCa patients. Herein we discuss: (1) the available evidence in literature on radiolabelled choline PET and their recent indications, (2) the role of alternative radiopharmaceutical agents, and (3) the advantages of a recent hybrid imaging device (PET/magnetic resonance imaging) in PCa. EVIDENCE ACQUISITION Data from recently published (2010-2015), original articles concerning the role of choline PET/CT, new emerging radiotracers, and a new imaging device are analysed. This review is reported according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. EVIDENCE SYNTHESIS In the restaging phase, the detection rate of choline PET varies between 4% and 97%, mainly depending on the site of recurrence and prostate-specific antigen levels. Both 68gallium (68Ga)-prostate specific membrane antigen and 18F-fluciclovine are shown to be more accurate in the detection of recurrent disease as compared with radiolabelled choline PET/CT. Particularly, Ga68-PSMA has a detection rate of 50% and 68%, respectively for prostate-specific antigen levels < 0.5ng/ml and 0.5-2ng/ml. Moreover, 68Ga- PSMA PET/magnetic resonance imaging demonstrated a particularly higher accuracy in detecting PCa than PET/CT. New tracers, such as radiolabelled bombesin or urokinase-type plasminogen activator receptor, are promising, but few data in clinical practice are available today. CONCLUSIONS Some limitations emerge from the published papers, both for radiolabelled choline PET/CT and also for new radiopharmaceutical agents. Efforts are still needed to enhance the impact of published data in the world of oncology, in particular when new radiopharmaceuticals are introduced into the clinical arena. PATIENT SUMMARY In the present review, the authors summarise the last evidences in clinical practice for the assessment of prostate cancer, by using nuclear medicine modalities, like positron emission tomography/computed tomography and positron emission tomography/magnetic resonance imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Perihematomal edema contributes to secondary brain injury in the course of intracerebral hemorrhage. The effect of decompressive surgery on perihematomal edema after intracerebral hemorrhage is unknown. This study analyzed the course of PHE in patients who were or were not treated with decompressive craniectomy. METHODS More than 100 computed tomography images from our published cohort of 25 patients were evaluated retrospectively at two university hospitals in Switzerland. Computed tomography scans covered the time from admission until day 100. Eleven patients were treated by decompressive craniectomy and 14 were treated conservatively. Absolute edema and hematoma volumes were assessed using 3-dimensional volumetric measurements. Relative edema volumes were calculated based on maximal hematoma volume. RESULTS Absolute perihematomal edema increased from 42.9 ml to 125.6 ml (192.8%) after 21 days in the decompressive craniectomy group, versus 50.4 ml to 67.2 ml (33.3%) in the control group (Δ at day 21 = 58.4 ml, p = 0.031). Peak edema developed on days 25 and 35 in patients with decompressive craniectomy and controls respectively, and it took about 60 days for the edema to decline to baseline in both groups. Eight patients (73%) in the decompressive craniectomy group and 6 patients (43%) in the control group had a good outcome (modified Rankin Scale score 0 to 4) at 6 months (P = 0.23). CONCLUSIONS Decompressive craniectomy is associated with a significant increase in perihematomal edema compared to patients who have been treated conservatively. Perihematomal edema itself lasts about 60 days if it is not treated, but decompressive craniectomy ameliorates the mass effect exerted by the intracerebral hemorrhage plus the perihematomal edema, as reflected by the reduced midline shift.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION Patient management following elective cranial surgery often includes routine postoperative computed tomography (CT). We analyzed whether a regime of early extubation and close neurological monitoring without routine CT is safe, and compared the rate of postoperative emergency neurosurgical intervention with published data. METHODS Four hundred ninety-two patients were prospectively analyzed; 360 had supra- and 132 had infratentorial lesions. Extubation within one hour after skin closure was aimed for in all cases. CT was performed within 48 hours only in cases of unexpected neurological findings. RESULTS Four-hundred sixty-nine of the 492 patients (95.3%) were extubated within one hour, 20 (4.1%) within 3 hours, and three (0.6%) within 3 to 10 hours. Emergency CT within 48 hours was performed for 43/492 (8.7%) cases. Rate of recraniotomy within 48 hours for patients with postoperative hemorrhage was 0.8% (n = 4), and 0.8% (n = 4) required placement of an external ventricular drain (EVD). Of 469 patients extubated within one hour, 3 required recraniotomy and 2 required EVD placements. Of 23 patients with delayed extubation, 1 recraniotomy and 2 EVDs were required. Failure to extubate within one hour was associated with a significantly higher risk of surgical intervention within 48 hours (rate 13.0%, p = 0.004, odds ratio 13.9, 95% confidence interval [3.11-62.37]). DISCUSSION Early extubation combined with close neurological monitoring is safe and omits the need for routine postoperative CT. Patients not extubated within one hour do need early CT, since they had a significantly increased risk of requiring emergency neurosurgical intervention. TRIAL REGISTRATION ClinicalTrials.gov NCT01987648.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Lethal chondrodysplasia (bulldog syndrome) is a well-known congenital syndrome in cattle and occurs sporadically in many breeds. In 2015, it was noticed that about 12 % of the offspring of the phenotypically normal Danish Holstein sire VH Cadiz Captivo showed chondrodysplasia resembling previously reported bulldog calves. Pedigree analysis of affected calves did not display obvious inbreeding to a common ancestor, suggesting the causative allele was not a rare recessive. The normal phenotype of the sire suggested a dominant inheritance with incomplete penetrance or a mosaic mutation. Results Three malformed calves were examined by necropsy, histopathology, radiology, and computed tomography scanning. These calves were morphologically similar and displayed severe disproportionate dwarfism and reduced body weight. The syndrome was characterized by shortening and compression of the body due to reduced length of the spine and the long bones of the limbs. The vicerocranium had severe dysplasia and palatoschisis. The bones had small irregular diaphyses and enlarged epiphyses consisting only of chondroid tissue. The sire and a total of four affected half-sib offspring and their dams were genotyped with the BovineHD SNP array to map the defect in the genome. Significant genetic linkage was obtained for several regions of the bovine genome including chromosome 5 where whole genome sequencing of an affected calf revealed a COL2A1 point mutation (g.32473300 G > A). This private sequence variant was predicted to affect splicing as it altered the conserved splice donor sequence GT at the 5’-end of COL2A1 intron 36, which was changed to AT. All five available cases carried the mutant allele in heterozygous state and all five dams were homozygous wild type. The sire VH Cadiz Captivo was shown to be a gonadal and somatic mosaic as assessed by the presence of the mutant allele at levels of about 5 % in peripheral blood and 15 % in semen. Conclusions The phenotypic and genetic findings are comparable to a previously reported COL2A1 missense mutation underlying lethal chondrodysplasia in the offspring of a mosaic French Holstein sire (Igale Masc). The identified independent spontaneous splice site variant in COL2A1 most likely caused chondrodysplasia and must have occurred during the early foetal development of the sire. This study provides a first example of a dominant COL2A1 splice site variant as candidate causal mutation of a severe lethal chondrodysplasia phenotype. Germline mosaicism is a relatively frequent mechanism in the origin of genetic disorders and explains the prevalence of a certain fraction of affected offspring. Paternal dominant de novo mutations are a risk in cattle breeding, especially because the ratio of defective offspring may be very high and be associated with significant animal welfare problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we compared contrast-enhanced ultrasound perfusion imaging with magnetic resonance perfusion-weighted imaging or perfusion computed tomography for detecting normo-, hypo-, and nonperfused brain areas in acute middle cerebral artery stroke. We performed high mechanical index contrast-enhanced ultrasound perfusion imaging in 30 patients. Time-to-peak intensity of 10 ischemic regions of interests was compared to four standardized nonischemic regions of interests of the same patient. A time-to-peak >3 s (ultrasound perfusion imaging) or >4 s (perfusion computed tomography and magnetic resonance perfusion) defined hypoperfusion. In 16 patients, 98 of 160 ultrasound perfusion imaging regions of interests of the ischemic hemisphere were classified as normal, and 52 as hypoperfused or nonperfused. Ten regions of interests were excluded due to artifacts. There was a significant correlation of the ultrasound perfusion imaging and magnetic resonance perfusion or perfusion computed tomography (Pearson`s chi-squared test 79.119, p < 0.001) (OR 0.1065, 95% CI 0.06-0.18). No perfusion in ultrasound perfusion imaging (18 regions of interests) correlated highly with diffusion restriction on magnetic resonance imaging (Pearson's chi-squared test 42.307, p < 0.001). Analysis of receiver operating characteristics proved a high sensitivity of ultrasound perfusion imaging in the diagnosis of hypoperfused area under the curve, (AUC = 0.917; p < 0.001) and nonperfused (AUC = 0.830; p < 0.001) tissue in comparison with perfusion computed tomography and magnetic resonance perfusion. We present a proof of concept in determining normo-, hypo-, and nonperfused tissue in acute stroke by advanced contrast-enhanced ultrasound perfusion imaging.