226 resultados para Oxygenation-sensitive cardiovascular magnetic resonance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postmortem imaging is increasingly used in forensic practice in cases of natural deaths related to cardiovascular diseases, which represent the most common causes of death in developed countries. While radiological examination is generally considered to be a good complement for conventional autopsy, it was thought to have limited application in cardiovascular pathology. At present, multidetector computed tomography (MDCT), CT angiography, and cardiac magnetic resonance imaging (MRI) are used in postmortem radiological investigation of cardiovascular pathologies. This review presents the actual state of postmortem imaging for cardiovascular pathologies in cases of sudden cardiac death (SCD), taking into consideration both the advantages and limitations. The radiological evaluation of ischemic heart disease (IHD), the most frequent cause of SCD in the General population of industrialized countries, includes the examination of the coronary arteries and myocardium. Postmortem CT angiography (PMCTA) is very useful for the detection of stenoses and occlusions of coronary arteries but less so for the identification of ischemic myocardium. MRI is the method of choice for the radiological investigation of the myocardium in clinical practice, but ist accessibility and application are still limited in postmortem practice. There are very few reports implicating postmortem radiology in the investigation of other causes of SCD, such as cardiomyopathies, coronary artery abnormalities, and valvular pathologies. Cardiomyopathies representing the most frequent cause of SCD in young athletes cannot be diagnosed by echocardiography, the most widely available technique in clinical practice for the functional evaluation of the heart and the detection of cardiomyopathies. PMCTA and MRI have the potential to detect advanced stages of diseases when morphological substrate is present, but these methods have yet to be sufficiently validated for postmortem cases. Genetically determined channelopathies cannot be detected radiologically. This review underlines the need to establish the role of postmortem radiology in the diagnosis of SCD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Synchrotron microbeam radiation therapy (MRT) is an innovative irradiation modality based on spatial fractionation of a high-dose X-ray beam into lattices of microbeams. The increase in lifespan of brain tumor-bearing rats is associated with vascular damage but the physiological consequences of MRT on blood vessels have not been described. In this manuscript, we evaluate the oxygenation changes induced by MRT in an intracerebral 9L gliosarcoma model. METHODS Tissue responses to MRT (two orthogonal arrays (2 × 400Gy)) were studied using magnetic resonance-based measurements of local blood oxygen saturation (MR_SO2) and quantitative immunohistology of RECA-1, Type-IV collagen and GLUT-1, marker of hypoxia. RESULTS In tumors, MR_SO2 decreased by a factor of 2 in tumor between day 8 and day 45 after MRT. This correlated with tumor vascular remodeling, i.e. decrease in vessel density, increases in half-vessel distances (×5) and GLUT-1 immunoreactivity. Conversely, MRT did not change normal brain MR_SO2, although vessel inter-distances increased slightly. CONCLUSION We provide new evidence for the differential effect of MRT on tumor vasculature, an effect that leads to tumor hypoxia. As hypothesized formerly, the vasculature of the normal brain exposed to MRT remains sufficiently perfused to prevent any hypoxia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES This study aimed to demonstrate that the presence of late gadolinium enhancement (LGE) is a predictor of death and other adverse events in patients with suspected cardiac sarcoidosis. BACKGROUND Cardiac sarcoidosis is the most important cause of patient mortality in systemic sarcoidosis, yielding a 5-year mortality rate between 25% and 66% despite immunosuppressive treatment. Other groups have shown that LGE may hold promise in predicting future adverse events in this patient group. METHODS We included 155 consecutive patients with systemic sarcoidosis who underwent cardiac magnetic resonance (CMR) for workup of suspected cardiac sarcoid involvement. The median follow-up time was 2.6 years. Primary endpoints were death, aborted sudden cardiac death, and appropriate implantable cardioverter-defibrillator (ICD) discharge. Secondary endpoints were ventricular tachycardia (VT) and nonsustained VT. RESULTS LGE was present in 39 patients (25.5%). The presence of LGE yields a Cox hazard ratio (HR) of 31.6 for death, aborted sudden cardiac death, or appropriate ICD discharge, and of 33.9 for any event. This is superior to functional or clinical parameters such as left ventricular (LV) ejection fraction (EF), LV end-diastolic volume, or presentation as heart failure, yielding HRs between 0.99 (per % increase LVEF) and 1.004 (presentation as heart failure), and between 0.94 and 1.2 for potentially lethal or other adverse events, respectively. Except for 1 patient dying from pulmonary infection, no patient without LGE died or experienced any event during follow-up, even if the LV was enlarged and the LVEF severely impaired. CONCLUSIONS Among our population of sarcoid patients with nonspecific symptoms, the presence of myocardial scar indicated by LGE was the best independent predictor of potentially lethal events, as well as other adverse events, yielding a Cox HR of 31.6 and of 33.9, respectively. These data support the necessity for future large, longitudinal follow-up studies to definitely establish LGE as an independent predictor of cardiac death in sarcoidosis, as well as to evaluate the incremental prognostic value of additional parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcatheter aortic valve replacement (TAVR) as well as thoracic and abdominal endovascular aortic repair (TEVAR and EVAR) rely on accurate pre- and postprocedural imaging. This review article discusses the application of imaging, including preprocedural assessment and measurements as well as postprocedural imaging of complications. Furthermore, the exciting perspective of computational fluid dynamics (CFD) based on cross-sectional imaging is presented. TAVR is a minimally invasive alternative for treatment of aortic valve stenosis in patients with high age and multiple comorbidities who cannot undergo traditional open surgical repair. Given the lack of direct visualization during the procedure, pre- and peri-procedural imaging forms an essential part of the intervention. Computed tomography angiography (CTA) is the imaging modality of choice for preprocedural planning. Routine postprocedural follow-up is performed by echocardiography to confirm treatment success and detect complications. EVAR and TEVAR are minimally invasive alternatives to open surgical repair of aortic pathologies. CTA constitutes the preferred imaging modality for both preoperative planning and postoperative follow-up including detection of endoleaks. Magnetic resonance imaging is an excellent alternative to CT for postoperative follow-up, and is especially beneficial for younger patients given the lack of radiation. Ultrasound is applied in screening and postoperative follow-up of abdominal aortic aneurysms, but cross-sectional imaging is required once abnormalities are detected. Contrast-enhanced ultrasound may be as sensitive as CTA in detecting endoleaks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic disease with an inflammatory and neurodegenerative pathology. Axonal loss and neurodegeneration occurs early in the disease course and may lead to irreversible neurological impairment. Changes in brain volume, observed from the earliest stage of MS and proceeding throughout the disease course, may be an accurate measure of neurodegeneration and tissue damage. There are a number of magnetic resonance imaging-based methods for determining global or regional brain volume, including cross-sectional (e.g. brain parenchymal fraction) and longitudinal techniques (e.g. SIENA [Structural Image Evaluation using Normalization of Atrophy]). Although these methods are sensitive and reproducible, caution must be exercised when interpreting brain volume data, as numerous factors (e.g. pseudoatrophy) may have a confounding effect on measurements, especially in a disease with complex pathological substrates such as MS. Brain volume loss has been correlated with disability progression and cognitive impairment in MS, with the loss of grey matter volume more closely correlated with clinical measures than loss of white matter volume. Preventing brain volume loss may therefore have important clinical implications affecting treatment decisions, with several clinical trials now demonstrating an effect of disease-modifying treatments (DMTs) on reducing brain volume loss. In clinical practice, it may therefore be important to consider the potential impact of a therapy on reducing the rate of brain volume loss. This article reviews the measurement of brain volume in clinical trials and practice, the effect of DMTs on brain volume change across trials and the clinical relevance of brain volume loss in MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endovascular aortic repair (EVAR) necessitates lifelong surveillance for the patient, in order to detect complications timely. Endoleaks (ELs) are among the most common complications of EVAR. Especially type II ELs can have a very unpredictable clinical course and this can range from spontaneous sealing to aortic rupture. Subgroups of this type of EL need to be identified in order to make a proper risk stratification. Aim of this review is to describe the existing imaging techniques, including their advantages and disadvantages in the context of post-EVAR surveillance with a particular emphasis on low-flow ELs. Low flow ELs cause pressurization of the aortic aneurysm sac with a low velocity filling, leading to difficulty of detection by routine imaging protocols for EVAR surveillance, e.g. bi- or triphasic multislice computed tomographic angiography, magnetic resonance imaging and contrast enhanced ultrasound. In this article, we review the imaging possibilities of ELs and discuss the different imaging strategies available for depicting low flow ELs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To evaluate the accuracy, safety, and efficacy of cervical nerve root injection therapy using magnetic resonance guidance in an open 1.0 T MRI system. METHODS Between September 2009 and April 2012, a total of 21 patients (9 men, 12 women; mean age 47.1 ± 11.1 years) underwent MR-guided cervical periradicular injection for cervical radicular pain in an open 1.0 T system. An interactive proton density-weighted turbo spin echo (PDw TSE) sequence was used for real-time guidance of the MR-compatible 20-gauge injection needle. Clinical outcome was evaluated on a verbal numeric rating scale (VNRS) before injection therapy (baseline) and at 1 week and 1, 3, and 6 months during follow-up. RESULTS All procedures were technically successful and there were no major complications. The mean preinterventional VNRS score was 7.42 and exhibited a statistically significant decrease (P < 0.001) at all follow-up time points: 3.86 ± 1.53 at 1 week, 3.21 ± 2.19 at 1 month, 2.58 ± 2.54 at 3 months, and 2.76 ± 2.63 at 6 months. At 6 months, 14.3 % of the patients reported complete resolution of radicular pain and 38.1 % each had either significant (4-8 VNRS score points) or mild (1-3 VNRS score points) relief of pain; 9.5 % experienced no pain relief. CONCLUSION Magnetic resonance fluoroscopy-guided periradicular cervical spine injection is an accurate, safe, and efficacious treatment option for patients with cervical radicular pain. The technique may be a promising alternative to fluoroscopy- or CT-guided injections of the cervical spine, especially in young patients and in patients requiring repeat injections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To develop a method for computing and visualizing pressure differences derived from time-resolved velocity-encoded three-dimensional phase-contrast magnetic resonance imaging (4D flow MRI) and to compare pressure difference maps of patients with unrepaired and repaired aortic coarctation to young healthy volunteers. METHODS 4D flow MRI data of four patients with aortic coarctation either before or after repair (mean age 17 years, age range 3-28, one female, three males) and four young healthy volunteers without history of cardiovascular disease (mean age 24 years, age range 20-27, one female, three males) was acquired using a 1.5-T clinical MR scanner. Image analysis was performed with in-house developed image processing software. Relative pressures were computed based on the Navier-Stokes equation. RESULTS A standardized method for intuitive visualization of pressure difference maps was developed and successfully applied to all included patients and volunteers. Young healthy volunteers exhibited smooth and regular distribution of relative pressures in the thoracic aorta at mid systole with very similar distribution in all analyzed volunteers. Patients demonstrated disturbed pressures compared to volunteers. Changes included a pressure drop at the aortic isthmus in all patients, increased relative pressures in the aortic arch in patients with residual narrowing after repair, and increased relative pressures in the descending aorta in a patient after patch aortoplasty. CONCLUSIONS Pressure difference maps derived from 4D flow MRI can depict alterations of spatial pressure distribution in patients with repaired and unrepaired aortic coarctation. The technique might allow identifying pathophysiological conditions underlying complications after aortic coarctation repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Precise temperature measurements in the magnetic field are indispensable for MR safety studies and for temperature calibration during MR-guided thermotherapy. In this work, the interference of two commonly used fiber-optical temperature measurement systems with the static magnetic field B0 was determined. METHODS Two fiber-optical temperature measurement systems, a GaAs-semiconductor and a phosphorescent phosphor ceramic, were compared for temperature measurements in B0 . The probes and a glass thermometer for reference were placed in an MR-compatible tube phantom within a water bath. Temperature measurements were carried out at three different MR systems covering static magnetic fields up to B0  = 9.4T, and water temperatures were changed between 25°C and 65°C. RESULTS The GaAs-probe significantly underestimated absolute temperatures by an amount related to the square of B0 . A maximum difference of ΔT = -4.6°C was seen at 9.4T. No systematic temperature difference was found with the phosphor ceramic probe. For both systems, the measurements were not dependent on the orientation of the sensor to B0 . CONCLUSION Temperature measurements with the phosphor ceramic probe are immune to magnetic fields up to 9.4T, whereas the GaAs-probes either require a recalibration inside the MR system or a correction based on the square of B0 . Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE The aim of this study was to compare the diagnostic accuracy of 3D time-of-flight (TOF-MRA) and contrast-enhanced (CE-MRA) magnetic resonance angiography at 3 T for detection and quantification of proximal high-grade stenosis using multidetector computed tomography angiography (MDCTA) as reference standard. METHODS The institutional ethics committee approved this prospective study. A total of 41 patients suspected of having internal carotid artery (ICA) stenosis underwent both MDCTA and MRA. CE-MRA and TOF-MRA were performed using a 3.0-T imager with a dedicated eight-element cervical coil. ICA stenoses were measured according to the North American Symptomatic Carotid Endarterectomy Trial criteria and categorized as 0-25 % (minimal), 25-50 % (mild), 50-69 % (moderate), 70-99 % (high grade), and 100 % (occlusion). Sensitivity and specificity for the detection of high-grade ICA stenoses (70-99 %) and ICA occlusions were determined. In addition, intermodality agreement was assessed with κ-statistics for detection of high-grade ICA stenoses (70-99 %) and ICA occlusions. RESULTS A total of 80 carotid arteries of 41 patients were reviewed. Two previously stented ICAs were excluded from analysis. On MDCTA, 7 ICAs were occluded, 12 ICAs presented with and 63 without a high-grade ICA stenosis (70-99 %). For detecting 70-99 % stenosis, both 3D TOF-MRA and CE-MRA were 91.7 % sensitive and 98.5 % specific, respectively. Both MRA techniques were highly sensitive (100 %), and specific (CE-MRA, 100 %; TOF-MRA, 98.7 %) for the detection of ICA occlusion. However, TOF-MRA misclassified one high-grade stenosis as occlusion. Intermodality agreement for detection of 70-99 % ICA stenoses was excellent between TOF-MRA and CE-MRA [κ = 0.902, 95 % confidence interval (CI) = 0.769-1.000], TOF-MRA and MDCTA (κ = 0.902, 95 % CI = 0.769-1.000), and CE-MRA and MDCTA (κ = 0.902, 95 % CI = 0.769-1.000). CONCLUSION Both 3D TOF-MRA and CE-MRA at 3 T are reliable tools for detecting high-grade proximal ICA stenoses (70-99 %). 3D TOF-MRA might misclassify pseudo-occlusions as complete occlusions. If there are no contraindications for CE-MRA, CE-MRA is recommended as primary MR imaging modality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maternal dissociative symptoms which can be comorbid with interpersonal violence-related post-traumatic stress disorder (IPV-PTSD) have been linked to decreased sensitivity and responsiveness to children's emotional communication. This study examined the influence of dissociation on neural activation independently of IPV-PTSD symptom severity when mothers watch video-stimuli of their children during stressful and non-stressful mother-child interactions. Based on previous observations in related fields, we hypothesized that more severe comorbid dissociation in IPV-PTSD would be associated with lower limbic system activation and greater neural activity in regions of the emotion regulation circuit such as the medial prefrontal cortex and dorsolateral prefrontal cortex (dlPFC). Twenty mothers (of children aged 12-42 months), with and without IPV-PTSD watched epochs showing their child during separation and play while undergoing functional magnetic resonance imaging (fMRI). Multiple regression indicated that when mothers diagnosed with IPV-PTSD watched their children during separation compared to play, dissociative symptom severity was indeed linked to lowered activation within the limbic system, while greater IPV-PTSD symptom severity was associated with heightened limbic activity. Concerning emotion regulation areas, there was activation associated to dissociation in the right dlPFC. Our results are likely a neural correlate of affected mothers' reduced capacity for sensitive responsiveness to their young child following exposure to interpersonal stress, situations that are common in day-to-day parenting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient global amnesia versus transient ischaemic attack: clinical presentation and cerebral vascular accident risk Transient global amnesia is an acute, benign, isolated and temporarily limited disturbance of memory, that can occur repeatedly but shows no increased risk of cardiovascular events or stroke in particular. Therefore, patients with the typical clinical presentation and a normal brain magnetic resonance-scan require neither further diagnostic nor therapeutic interventions. Since the differential diagnosis of transient global amnesia is wide, and transient ischaemic attacks can present similarly, a careful clinical evaluation and neuroimaging is recommended. In any case of doubt further diagnostic steps according to stroke workup should be initiated. In contrast, a transient ischaemic attack represents a neurological emergency where clinical and diagnostic evaluation must be introduced fast. The rapid establishment of therapeutic and secondary preventive measures decreases the clearly elevated stroke risk and prevents disability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess spatial and temporal pressure characteristics in patients with repaired aortic coarctation compared to young healthy volunteers using time-resolved velocity-encoded three-dimensional phase-contrast magnetic resonance imaging (4D flow MRI) and derived 4D pressure difference maps. After in vitro validation against invasive catheterization as gold standard, 4D flow MRI of the thoracic aorta was performed at 1.5T in 13 consecutive patients after aortic coarctation repair without recoarctation and 13 healthy volunteers. Using in-house developed processing software, 4D pressure difference maps were computed based on the Navier-Stokes equation. Pressure difference amplitudes, maximum slope of pressure amplitudes and spatial pressure range at mid systole were retrospectively measured by three readers, and twice by one reader to assess inter- and intraobserver agreement. In vitro, pressure differences derived from 4D flow MRI showed excellent agreement to invasive catheter measurements. In vivo, pressure difference amplitudes, maximum slope of pressure difference amplitudes and spatial pressure range at mid systole were significantly increased in patients compared to volunteers in the aortic arch, the proximal descending and the distal descending thoracic aorta (p < 0.05). Greatest differences occurred in the proximal descending aorta with values of the three parameters for patients versus volunteers being 19.7 ± 7.5 versus 10.0 ± 2.0 (p < 0.001), 10.9 ± 10.4 versus 1.9 ± 0.4 (p = 0.002), and 8.7 ± 6.3 versus 1.6 ± 0.9 (p < 0.001). Inter- and intraobserver agreements were excellent (p < 0.001). Noninvasive 4D pressure difference mapping derived from 4D flow MRI enables detection of altered intraluminal aortic pressures and showed significant spatial and temporal changes in patients with repaired aortic coarctation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The choice of imaging techniques in patients with suspected coronary artery disease (CAD) varies between countries, regions, and hospitals. This prospective, multicenter, comparative effectiveness study was designed to assess the relative accuracy of commonly used imaging techniques for identifying patients with significant CAD. METHODS AND RESULTS A total of 475 patients with stable chest pain and intermediate likelihood of CAD underwent coronary computed tomographic angiography and stress myocardial perfusion imaging by single photon emission computed tomography or positron emission tomography, and ventricular wall motion imaging by stress echocardiography or cardiac magnetic resonance. If ≥1 test was abnormal, patients underwent invasive coronary angiography. Significant CAD was defined by invasive coronary angiography as >50% stenosis of the left main stem, >70% stenosis in a major coronary vessel, or 30% to 70% stenosis with fractional flow reserve ≤0.8. Significant CAD was present in 29% of patients. In a patient-based analysis, coronary computed tomographic angiography had the highest diagnostic accuracy, the area under the receiver operating characteristics curve being 0.91 (95% confidence interval, 0.88-0.94), sensitivity being 91%, and specificity being 92%. Myocardial perfusion imaging had good diagnostic accuracy (area under the curve, 0.74; confidence interval, 0.69-0.78), sensitivity 74%, and specificity 73%. Wall motion imaging had similar accuracy (area under the curve, 0.70; confidence interval, 0.65-0.75) but lower sensitivity (49%, P<0.001) and higher specificity (92%, P<0.001). The diagnostic accuracy of myocardial perfusion imaging and wall motion imaging were lower than that of coronary computed tomographic angiography (P<0.001). CONCLUSIONS In a multicenter European population of patients with stable chest pain and low prevalence of CAD, coronary computed tomographic angiography is more accurate than noninvasive functional testing for detecting significant CAD defined invasively. CLINICAL TRIAL REGISTRATION URL http://www.clinicaltrials.gov. Unique identifier: NCT00979199.