214 resultados para INTRAVASCULAR ULTRASOUND ELASTOGRAPHY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a video of an ultrasound-guided laparoscopic surgical management of a large uterine scar isthmocele connected with the extra-amniotic space in early pregnancy. A case of a pregnant patient who was diagnosed with a large isthmocele connected with the extra-amniotic space on routine ultrasound at 8 weeks of gestational age is presented. The uterine defect was successfully sutured laparoscopically under ultrasound guidance. The pregnancy continued uneventfully, and a healthy baby was delivered via cesarean section at 38 weeks gestational age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Patient-to-image registration is a core process of image-guided surgery (IGS) systems. We present a novel registration approach for application in laparoscopic liver surgery, which reconstructs in real time an intraoperative volume of the underlying intrahepatic vessels through an ultrasound (US) sweep process. METHODS An existing IGS system for an open liver procedure was adapted, with suitable instrument tracking for laparoscopic equipment. Registration accuracy was evaluated on a realistic phantom by computing the target registration error (TRE) for 5 intrahepatic tumors. The registration work flow was evaluated by computing the time required for performing the registration. Additionally, a scheme for intraoperative accuracy assessment by visual overlay of the US image with preoperative image data was evaluated. RESULTS The proposed registration method achieved an average TRE of 7.2 mm in the left lobe and 9.7 mm in the right lobe. The average time required for performing the registration was 12 minutes. A positive correlation was found between the intraoperative accuracy assessment and the obtained TREs. CONCLUSIONS The registration accuracy of the proposed method is adequate for laparoscopic intrahepatic tumor targeting. The presented approach is feasible and fast and may, therefore, not be disruptive to the current surgical work flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION The aim of this study was to compare orthodromic sural nerve conduction study (NCS) results using ultrasound-guided needle positioning (USNP) to surface electrode recordings. METHODS 51 healthy subjects aged 24 - 80 years, divided into 5 age groups, were examined. Electrical stimuli were applied behind the lateral malleolus. Sensory nerve action potentials (SNAPs) were recorded 8 and 15 cm proximally with surface and needle electrodes. RESULTS Mean SNAP amplitudes in µV (surface/needle electrodes) averaged 12.7 (SD 7.6)/40.6 (SD 20.8), P<0.001, for subjects aged 20-29 years, and 5.0 (SD 2.4)/19.8 (SD 9.8), P<0.01, for subjects aged > 60 years. SNAP amplitudes were smaller at the proximal recording location. DISCUSSION NCS using USNP yield higher amplitude responses than surface electrodes in all age groups at all recording sites. SNAP amplitudes are smaller at proximal recording locations due to sural nerve branching. This article is protected by copyright. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we compared contrast-enhanced ultrasound perfusion imaging with magnetic resonance perfusion-weighted imaging or perfusion computed tomography for detecting normo-, hypo-, and nonperfused brain areas in acute middle cerebral artery stroke. We performed high mechanical index contrast-enhanced ultrasound perfusion imaging in 30 patients. Time-to-peak intensity of 10 ischemic regions of interests was compared to four standardized nonischemic regions of interests of the same patient. A time-to-peak >3 s (ultrasound perfusion imaging) or >4 s (perfusion computed tomography and magnetic resonance perfusion) defined hypoperfusion. In 16 patients, 98 of 160 ultrasound perfusion imaging regions of interests of the ischemic hemisphere were classified as normal, and 52 as hypoperfused or nonperfused. Ten regions of interests were excluded due to artifacts. There was a significant correlation of the ultrasound perfusion imaging and magnetic resonance perfusion or perfusion computed tomography (Pearson`s chi-squared test 79.119, p < 0.001) (OR 0.1065, 95% CI 0.06-0.18). No perfusion in ultrasound perfusion imaging (18 regions of interests) correlated highly with diffusion restriction on magnetic resonance imaging (Pearson's chi-squared test 42.307, p < 0.001). Analysis of receiver operating characteristics proved a high sensitivity of ultrasound perfusion imaging in the diagnosis of hypoperfused area under the curve, (AUC = 0.917; p < 0.001) and nonperfused (AUC = 0.830; p < 0.001) tissue in comparison with perfusion computed tomography and magnetic resonance perfusion. We present a proof of concept in determining normo-, hypo-, and nonperfused tissue in acute stroke by advanced contrast-enhanced ultrasound perfusion imaging.