293 resultados para 580
Resumo:
Non-sorted circles, non-sorted polygons, and earth hummocks are common ground-surface features ill arctic regions. The), are caused by a variety of physical processes that Occur in permafrost regions including contraction cracking and frost heave. Here we describe the vegetation of patterned-ground forms on zonal sites at three location!: along an N-S transect through the High Arctic of Canada. We made 75 releves on patterned-ground features (circles, polygons, earth hummocks) and adjacent tundra (Interpolygon, intercircle, interhummock areas) and identified and classified the vegetation according to the Braun-Blanquet Method. Environmental factors were correlated with the vegetation data using a nonmetric multidimensional scaling ordination (NMDS). We identified eleven commnunities: (1) Puccinellia angustata-Papaver radicalum community in xeromesic non-sorted polygons of subzone A of the Circumpolar Arctic Vegetation Map; (2) Saxifraga-Parmelia omphalodes ssp. glacialis community in hydromesic interpolygon areas of subzone A; (3) Hypogymnia subobscura-Lecanora epibryon community In xeromesic non-sorted polygons of subzone B; (4) Orthotrichum speciosum-Salix arctica community In xeromesic interpolygon areas of subzone B; (5) Cochlearia groenlandica-Luzula nivalis community in hydromesic earth Mocks Of subzone B; (6) Salix arctica-Eriophorum angustifolium ssp. triste community in hygric earth hummocks of subzone 13; (7) Puccinellia angustata-Potentilla vahliana community in xeromesic non-sorted circles and bare patches of subzone Q (8) Dryas integrifolia-Carex rupestris community in xeromesic intercircle areas and vegetated patches of subzone C; (9) Braya glabella ssp. purpurascens-Dryas integrifolia community In hydromesic non-sorted circles of subzone Q (10) Dryas integrifolia-Carex aquatilis community in hydromesic intercircle areas of subzone C; and (11) Eriophorum angustifolium ssp. triste-Carex aquatilis community ill hygric intercircle areas of subzone C. The NMDS ordination displayed the vegetation types with respect to complex environmental gradients. The first axis of the ordination corresponds to a complex soil moisture gradient and the second axis corresponds to a complex geology/elevation/climate gradient. The tundra plots have a greater moss and graminoid cover than the adjacent frost-heave communities. In general, frost-heave features have greater thaw depths, more bare ground, thinner organic horizons, and lower soil moisture than the surrounding tundra. The morphology of the investigated patterned ground forms changes along the climatic gradient, with non-sorted pollygons dominating in the northernmost sites and non-sorted circles dominating, in the southern sites.
Resumo:
Arctic landscapes have visually striking patterns of small polygons, circles, and hummocks. The linkages between the geophysical and biological components of these systems and their responses to climate changes are not well understood. The "Biocomplexity of Patterned Ground Ecosystems" project examined patterned-ground features (PGFs) in all five Arctic bioclimate subzones along an 1800-km trans-Arctic temperature gradient in northern Alaska and northwestern Canada. This paper provides an overview of the transect to illustrate the trends in climate, PGFs, vegetation, n-factors, soils, active-layer depth, and frost heave along the climate gradient. We emphasize the thermal effects of the vegetation and snow on the heat and water fluxes within patterned-ground systems. Four new modeling approaches build on the theme that vegetation controls microscale soil temperature differences between the centers and margins of the PGFs, and these in turn drive the movement of water, affect the formation of aggradation ice, promote differential soil heave, and regulate a host of system propel-ties that affect the ability of plants to colonize the centers of these features. We conclude with an examination of the possible effects of a climate wan-ning on patterned-ground ecosystems.
Resumo:
AIMS: It is unclear whether transcatheter aortic valve implantation (TAVI) addresses an unmet clinical need for those currently rejected for surgical aortic valve replacement (SAVR) and whether there is a subgroup of high-risk patients benefiting more from TAVI compared to SAVR. In this two-centre, prospective cohort study, we compared baseline characteristics and 30-day mortality between TAVI and SAVR in consecutive patients undergoing invasive treatment for aortic stenosis. METHODS AND RESULTS: We pre-specified different adjustment methods to examine the effect of TAVI as compared with SAVR on overall 30-day mortality: crude univariable logistic regression analysis, multivariable analysis adjusted for baseline characteristics, analysis adjusted for propensity scores, propensity score matched analysis, and weighted analysis using the inverse probability of treatment (IPT) as weights. A total of 1,122 patients were included in the study: 114 undergoing TAVI and 1,008 patients undergoing SAVR. The crude mortality rate was greater in the TAVI group (9.6% vs. 2.3%) yielding an odds ratio [OR] of 4.57 (95%-CI 2.17-9.65). Compared to patients undergoing SAVR, patients with TAVI were older, more likely to be in NYHA class III and IV, and had a considerably higher logistic EuroSCORE and more comorbid conditions. Adjusted OR depended on the method used to control for confounding and ranged from 0.60 (0.11-3.36) to 7.57 (0.91-63.0). We examined the distribution of propensity scores and found scores to overlap sufficiently only in a narrow range. In patients with sufficient overlap of propensity scores, adjusted OR ranged from 0.35 (0.04-2.72) to 3.17 (0.31 to 31.9). In patients with insufficient overlap, we consistently found increased odds of death associated with TAVI compared with SAVR irrespective of the method used to control confounding, with adjusted OR ranging from 5.88 (0.67-51.8) to 25.7 (0.88-750). Approximately one third of patients undergoing TAVI were found to be potentially eligible for a randomised comparison of TAVI versus SAVR. CONCLUSIONS: Both measured and unmeasured confounding limit the conclusions that can be drawn from observational comparisons of TAVI versus SAVR. Our study indicates that TAVI could be associated with either substantial benefits or harms. Randomised comparisons of TAVI versus SAVR are warranted.
Resumo:
Community dynamics in a calcareous grassland (Mesobrometum) in Egerkingen (Jura mountains, Switzerland) were investigated for 53 non-woody species in 25 1-m2 plots over 6 years. 50 0.0 1-m2 subplots per plot were recorded. The derived variables were spatial frequency, temporal frequency, frequency fluctuation, turnover, and cumulative frequency (each species), and cumulative species richness (all species). Spectra for 53 species of all variables were different for the two investigated spatial scales (0.0 1 m2, 1 m2). The comparison with other investigations of similar grass lands showed that the behaviour of some species is specific for this type of vegetation in general (e.g. Achillea millefolium, Arrhenatherum elatius, Bromus erectus ), but most species behaved in a stand-specific way, i.e. they may play another (similar or completely different) role in another grassland stand. Six spatio-temporal patterns were defined across species. To understand community dynamics, not only the dynamics of mobility but also of frequency fluctuations and spatial distribution of the species are fundamental. In addition, the understanding of temporal behaviour of all species present should be included. Averages always hide important information of vegetation dynamics, as was shown by the present investigation.