234 resultados para ± opal-CT
Resumo:
Spontaneous pneumomediastinum commonly occurs in healthy young men or parturient women in whom an increased intra-alveolar pressure (Valsalva maneuver, asthma, cough, emesis) leads to the rupture of the marginal pulmonary alveoli. The air ascends along the bronchi to the mediastinum and the subcutaneous space of the neck, causing cervico-fascial subcutaneous emphysema in 70-90% of cases. Ninety-five forensic cases, including five cases of hanging, were examined using postmortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) prior to autopsy until December 2003. This paper describes the findings of pneumomediastinum and cervical emphysema in three of five cases of hanging. The mechanism of its formation is discussed based on these results and a review of the literature. In conclusion, when putrefaction gas can be excluded the findings of pneumomediastinum and cervical soft tissue emphysema serve as evidence of vitality of a hanged person. Postmortem cross-sectional imaging is considered a useful visualization tool for emphysema, with a great potential for examination and documentation.
Resumo:
Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.
Resumo:
This study evaluated the feasibility of documenting patterned injury using three dimensions and true colour photography without complex 3D surface documentation methods. This method is based on a generated 3D surface model using radiologic slice images (CT) while the colour information is derived from photographs taken with commercially available cameras. The external patterned injuries were documented in 16 cases using digital photography as well as highly precise photogrammetry-supported 3D structured light scanning. The internal findings of these deceased were recorded using CT and MRI. For registration of the internal with the external data, two different types of radiographic markers were used and compared. The 3D surface model generated from CT slice images was linked with the photographs, and thereby digital true-colour 3D models of the patterned injuries could be created (Image projection onto CT/IprojeCT). In addition, these external models were merged with the models of the somatic interior. We demonstrated that 3D documentation and visualization of external injury findings by integration of digital photography in CT/MRI data sets is suitable for the 3D documentation of individual patterned injuries to a body. Nevertheless, this documentation method is not a substitution for photogrammetry and surface scanning, especially when the entire bodily surface is to be recorded in three dimensions including all external findings, and when precise data is required for comparing highly detailed injury features with the injury-inflicting tool.
Resumo:
In their daily forensic casework, the authors experienced discrepancies of tracheobronchial content findings between postmortem computed tomography (PMCT) and autopsy to an extent previously unnoticed in the literature. The goal of this study was to evaluate such discrepancies in routine forensic cases. A total of 327 cases that underwent PMCT prior to routine forensic autopsy were retrospectively evaluated for tracheal and bronchial contents according to PMCT and autopsy findings. Hounsfield unit (HU) values of tracheobronchial contents, causes of death, and presence of pulmonary edema were assessed in mismatching and matching cases. Comparing contents in PMCT and autopsy in each of the separately evaluated compartments of the respiratory tract low positive predictive values were assessed (trachea, 38.2 %; main bronchi, 40 %; peripheral bronchi, 69.1 %) indicating high discrepancy rates. The majority of tracheobronchial contents were viscous stomach contents in matching cases and low radiodensity materials (i.e., HU < 30) in mismatching cases. The majority of causes of death were cardiac related in the matching cases and skull/brain trauma in the mismatching cases. In mismatching cases, frequency of pulmonary edema was significantly higher than in matching cases. It can be concluded that discrepancies in tracheobronchial contents observed between PMCT and routine forensic autopsy occur in a considerable number of cases. Discrepancies may be explained by the runoff of contents via nose and mouth during external examination and the flow back of tracheal and main bronchial contents into the lungs caused by upright movement of the respiratory tract at autopsy.
Resumo:
Automatic segmentation of the hip joint with pelvis and proximal femur surfaces from CT images is essential for orthopedic diagnosis and surgery. It remains challenging due to the narrowness of hip joint space, where the adjacent surfaces of acetabulum and femoral head are hardly distinguished from each other. This chapter presents a fully automatic method to segment pelvic and proximal femoral surfaces from hip CT images. A coarse-to-fine strategy was proposed to combine multi-atlas segmentation with graph-based surface detection. The multi-atlas segmentation step seeks to coarsely extract the entire hip joint region. It uses automatically detected anatomical landmarks to initialize and select the atlas and accelerate the segmentation. The graph based surface detection is to refine the coarsely segmented hip joint region. It aims at completely and efficiently separate the adjacent surfaces of the acetabulum and the femoral head while preserving the hip joint structure. The proposed strategy was evaluated on 30 hip CT images and provided an average accuracy of 0.55, 0.54, and 0.50 mm for segmenting the pelvis, the left and right proximal femurs, respectively.
Resumo:
Image-based modeling is a popular approach to perform patient-specific biomechanical simulations. Accurate modeling is critical for orthopedic application to evaluate implant design and surgical planning. It has been shown that bone strength can be estimated from the bone mineral density (BMD) and trabecular bone architecture. However, these findings cannot be directly and fully transferred to patient-specific modeling since only BMD can be derived from clinical CT. Therefore, the objective of this study was to propose a method to predict the trabecular bone structure using a µCT atlas and an image registration technique. The approach has been evaluated on femurs and patellae under physiological loading. The displacement and ultimate force for femurs loaded in stance position were predicted with an error of 2.5% and 3.7%, respectively, while predictions obtained with an isotropic material resulted in errors of 7.3% and 6.9%. Similar results were obtained for the patella, where the strain predicted using the registration approach resulted in an improved mean squared error compared to the isotropic model. We conclude that the registration of anisotropic information from of a single template bone enables more accurate patient-specific simulations from clinical image datasets than isotropic model.
Resumo:
This paper addresses the issue of fully automatic segmentation of a hip CT image with the goal to preserve the joint structure for clinical applications in hip disease diagnosis and treatment. For this purpose, we propose a Multi-Atlas Segmentation Constrained Graph (MASCG) method. The MASCG method uses multi-atlas based mesh fusion results to initialize a bone sheetness based multi-label graph cut for an accurate hip CT segmentation which has the inherent advantage of automatic separation of the pelvic region from the bilateral proximal femoral regions. We then introduce a graph cut constrained graph search algorithm to further improve the segmentation accuracy around the bilateral hip joint regions. Taking manual segmentation as the ground truth, we evaluated the present approach on 30 hip CT images (60 hips) with a 15-fold cross validation. When the present approach was compared to manual segmentation, an average surface distance error of 0.30 mm, 0.29 mm, and 0.30 mm was found for the pelvis, the left proximal femur, and the right proximal femur, respectively. A further look at the bilateral hip joint regions demonstrated an average surface distance error of 0.16 mm, 0.21 mm and 0.20 mm for the acetabulum, the left femoral head, and the right femoral head, respectively.
Resumo:
BACKGROUND AND PURPOSE The posterior circulation Acute Stroke Prognosis Early CT Score (pc-APECTS) applied to CT angiography source images (CTA-SI) predicts the functional outcome of patients in the Basilar Artery International Cooperation Study (BASICS). We assessed the diagnostic and prognostic impact of pc-ASPECTS applied to perfusion CT (CTP) in the BASICS registry population. METHODS We applied pc-ASPECTS to CTA-SI and cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) parameter maps of BASICS patients with CTA and CTP studies performed. Hypoattenuation on CTA-SI, relative reduction in CBV or CBF, or relative increase in MTT were rated as abnormal. RESULTS CTA and CTP were available in 27/592 BASICS patients (4.6%). The proportion of patients with any perfusion abnormality was highest for MTT (93%; 95% confidence interval [CI], 76%-99%), compared with 78% (58%-91%) for CTA-SI and CBF, and 46% (27%-67%) for CBV (P < .001). All 3 patients with a CBV pc-ASPECTS < 8 compared to 6/23 patients with a CBV pc-ASPECTS ≥ 8 had died at 1 month (RR 3.8; 95% CI, 1.9-7.6). CONCLUSION CTP was performed in a minority of the BASICS registry population. Perfusion disturbances in the posterior circulation were most pronounced on MTT parameter maps. CBV pc-ASPECTS < 8 may indicate patients with high case fatality.
Resumo:
BACKGROUND Infiltration procedures are a common treatment of lumbar radiculopathy. There is a wide variety of infiltration techniques without an established gold standard. Therefore, we compared the effectiveness of CT-guided transforaminal infiltrations versus anatomical landmark-guided transforaminal infiltrations at the lower lumbar spine in case of acute sciatica at L3-L5. METHODS A retrospective chart review was conducted of 107 outpatients treated between 2009 and 2011. All patients were diagnosed with lumbar radiculopathic pain secondary to disc herniation in L3-L5. A total of 52 patients received CT-guided transforaminal infiltrations; 55 patients received non-imaging-guided nerve root infiltrations. The therapeutic success was evaluated regarding number of physician contacts, duration of treatment, type of analgesics used and loss of work days. Defined endpoint was surgery at the lower lumbar spine. RESULTS In the CT group, patients needed significantly less oral analgesics (p < 0.001). Overall treatment duration and physician contacts were significantly lower in the CT group (p < 0.001 and 0.002) either. In the CT group, patients lost significant fewer work days due to incapacity (p < 0.001). Surgery had to be performed in 18.2 % of the non-imaging group patients (CT group: 1.9 %; p = 0.008). CONCLUSION This study shows that CT-guided periradicular infiltration in lumbosciatica caused by intervertebral disc herniation is significantly superior to non-imaging, anatomical landmark-guided infiltration, regarding the parameters investigated. The high number of treatment failures in the non-imaging group underlines the inferiority of this treatment concept.
Resumo:
UNLABELLED The purpose of this study was to evaluate the reproducibility of a new software based analysing system for ventilation/perfusion single-photon emission computed tomography/computed tomography (V/P SPECT/CT) in patients with pulmonary emphysema and to compare it to the visual interpretation. PATIENTS, MATERIAL AND METHODS 19 patients (mean age: 68.1 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. Data were analysed by two independent observers in visual interpretation (VI) and by software based analysis system (SBAS). SBAS PMOD version 3.4 (Technologies Ltd, Zurich, Switzerland) was used to assess counts and volume per lung lobe/per lung and to calculate the count density per lung, lobe ratio of counts and ratio of count density. VI was performed using a visual scale to assess the mean counts per lung lobe. Interobserver variability and association for SBAS and VI were analysed using Spearman's rho correlation coefficient. RESULTS Interobserver agreement correlated highly in perfusion (rho: 0.982, 0.957, 0.90, 0.979) and ventilation (rho: 0.972, 0.924, 0.941, 0.936) for count/count density per lobe and ratio of counts/count density in SBAS. Interobserver agreement correlated clearly for perfusion (rho: 0.655) and weakly for ventilation (rho: 0.458) in VI. CONCLUSIONS SBAS provides more reproducible measures than VI for the relative tracer uptake in V/P SPECT/CTs in patients with pulmonary emphysema. However, SBAS has to be improved for routine clinical use.
Resumo:
OBJECTIVE To evaluate the role of an ultra-low-dose dual-source CT coronary angiography (CTCA) scan with high pitch for delimiting the range of the subsequent standard CTCA scan. METHODS 30 patients with an indication for CTCA were prospectively examined using a two-scan dual-source CTCA protocol (2.0 × 64.0 × 0.6 mm; pitch, 3.4; rotation time of 280 ms; 100 kV): Scan 1 was acquired with one-fifth of the tube current suggested by the automatic exposure control software [CareDose 4D™ (Siemens Healthcare, Erlangen, Germany) using 100 kV and 370 mAs as a reference] with the scan length from the tracheal bifurcation to the diaphragmatic border. Scan 2 was acquired with standard tube current extending with reduced scan length based on Scan 1. Nine central coronary artery segments were analysed qualitatively on both scans. RESULTS Scan 2 (105.1 ± 10.1 mm) was significantly shorter than Scan 1 (127.0 ± 8.7 mm). Image quality scores were significantly better for Scan 2. However, in 5 of 6 (83%) patients with stenotic coronary artery disease, a stenosis was already detected in Scan 1 and in 13 of 24 (54%) patients with non-stenotic coronary arteries, a stenosis was already excluded by Scan 1. Using Scan 2 as reference, the positive- and negative-predictive value of Scan 1 was 83% (5 of 6 patients) and 100% (13 of 13 patients), respectively. CONCLUSION An ultra-low-dose CTCA planning scan enables a reliable scan length reduction of the following standard CTCA scan and allows for correct diagnosis in a substantial proportion of patients. ADVANCES IN KNOWLEDGE Further dose reductions are possible owing to a change in the individual patient's imaging strategy as a prior ultra-low-dose CTCA scan may already rule out the presence of a stenosis or may lead to a direct transferal to an invasive catheter procedure.
Resumo:
PURPOSE To evaluate the utility of attenuation correction (AC) of V/P SPECT images for patients with pulmonary emphysema. MATERIALS AND METHODS Twenty-one patients (mean age 67.6 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. AC/non-AC V/P SPECT images were compared visually and semiquantitatively. Visual comparison of AC/non-AC images was based on a 5-point likert scale. Semiquantitative comparison assessed absolute counts per lung (aCpLu) and lung lobe (aCpLo) for AC/non-AC images using software-based analysis; percentage counts (PC = (aCpLo/aCpLu) × 100) were calculated. Correlation between AC/non-AC V/P SPECT images was analyzed using Spearman's rho correlation coefficient; differences were tested for significance with the Wilcoxon rank sum test. RESULTS Visual analysis revealed high conformity for AC and non-AC V/P SPECT images. Semiquantitative analysis of PC in AC/non-AC images had an excellent correlation and showed no significant differences in perfusion (ρ = 0.986) or ventilation (ρ = 0.979, p = 0.809) SPECT/CT images. CONCLUSION AC of V/P SPECT images for lung lobe-based function imaging in patients with pulmonary emphysema do not improve visual or semiquantitative image analysis.
Resumo:
PURPOSE To investigate whether the effects of hybrid iterative reconstruction (HIR) on coronary artery calcium (CAC) measurements using the Agatston score lead to changes in assignment of patients to cardiovascular risk groups compared to filtered back projection (FBP). MATERIALS AND METHODS 68 patients (mean age 61.5 years; 48 male; 20 female) underwent prospectively ECG-gated, non-enhanced, cardiac 256-MSCT for coronary calcium scoring. Scanning parameters were as follows: Tube voltage, 120 kV; Mean tube current time-product 63.67 mAs (50 - 150 mAs); collimation, 2 × 128 × 0.625 mm. Images were reconstructed with FBP and with HIR at all levels (L1 to L7). Two independent readers measured Agatston scores of all reconstructions and assigned patients to cardiovascular risk groups. Scores of HIR and FBP reconstructions were correlated (Spearman). Interobserver agreement and variability was assessed with ĸ-statistics and Bland-Altmann-Plots. RESULTS Agatston scores of HIR reconstructions were closely correlated with FBP reconstructions (L1, R = 0.9996; L2, R = 0.9995; L3, R = 0.9991; L4, R = 0.986; L5, R = 0.9986; L6, R = 0.9987; and L7, R = 0.9986). In comparison to FBP, HIR led to reduced Agatston scores between 97 % (L1) and 87.4 % (L7) of the FBP values. Using HIR iterations L1 - L3, all patients were assigned to identical risk groups as after FPB reconstruction. In 5.4 % of patients the risk group after HIR with the maximum iteration level was different from the group after FBP reconstruction. CONCLUSION There was an excellent correlation of Agatston scores after HIR and FBP with identical risk group assignment at levels 1 - 3 for all patients. Hence it appears that the application of HIR in routine calcium scoring does not entail any disadvantages. Thus, future studies are needed to demonstrate whether HIR is a reliable method for reducing radiation dose in coronary calcium scoring.