206 resultados para Harald Ofstad
Resumo:
To increase the efficiency of equine semen, it could be useful to split the artificial insemination dose and refreeze the redundant spermatozoa. In experiment I, semen of 10 sires of the Hanoverian breed, with poor and good semen freezability, was collected by artificial vagina, centrifuged, extended in INRA82 at 400 × 106 sperm/mL, and automatically frozen. After this first routinely applied freezing program, semen from each stallion was thawed, resuspended in INRA82 at 40 × 106 sperm/mL, filled in 0.5-mL straws, and refrozen. These steps were repeated, and sperm concentration was adjusted to 20 × 106 sperm/mL after a third freezing cycle. Regardless of stallion freezability group, sperm motility and sperm membrane integrity (FITC/PNA-Syto-PI-stain) decreased stepwise after first, second, and third freezing (62.3% ± 9.35, 24.0% ± 15.4, 3.3% ± 4.34, P ≤ .05; 29.6% ± 8.64, 14.9% ± 6.38, 8.3% ± 3.24, P ≤ .05), whereas the percentage of acrosome-reacted cells increased (19.5% ± 7.59, 23.9% ± 8.51, 29.2% ± 6.58, P ≤ .05). Sperm chromatin integrity was unaffected after multiple freeze/thaw cycles (DFI value: 18.6% ± 6.6, 17.2% ± 6.84, 17.1% ± 7.21, P > .05). In experiment II estrous, Hanoverian warmblood mares were inseminated with a total of 200 × 106 spermatozoa of two stallions with either good or poor semen freezability originating from the first, second, and third freeze/thaw cycle. First-cycle pregnancy rates were 4/10, 40%; 1/10, 10%; and 0/10, 0%. In conclusion, as expected, sperm viability of stallion spermatozoa significantly decreases as a consequence of multiple freezing. However, sperm chromatin integrity was not affected. Pregnancy rates after insemination of mares with refrozen semen are reduced.
Resumo:
The factors shaping cometary nuclei are still largely unknown, but could be the result of concurrent effects of evolutionary(1,2) and primordial processes(3,4). The peculiar bilobed shape of comet 67P/Churyumov-Gerasimenko may be the result of the fusion of two objects that were once separate or the result of a localized excavation by outgassing at the interface between the two lobes(5). Here we report that the comet's major lobe is enveloped by a nearly continuous set of strata, up to 650 metres thick, which are independent of an analogous stratified envelope on the minor lobe. Gravity vectors computed for the two lobes separately are closer to perpendicular to the strata than those calculated for the entire nucleus and adjacent to the neck separating the two lobes. Therefore comet 67P/Churyumov-Gerasimenko is an accreted body of two distinct objects with 'onion-like' stratification, which formed before they merged. We conclude that gentle, low-velocity collisions occurred between two fully formed kilometre-sized cometesimals in the early stages of the Solar System. The notable structural similarities between the two lobes of comet 67P/Churyumov-Gerasimenko indicate that the early-forming cometesimals experienced similar primordial stratified accretion, even though they formed independently.
Resumo:
Aims. We derive for the first time the size-frequency distribution of boulders on a comet, 67P/Churyumov-Gerasimenko (67P), computed from the images taken by the Rosetta/OSIRIS imaging system. We highlight the possible physical processes that lead to these boulder size distributions. Methods. We used images acquired by the OSIRIS Narrow Angle Camera, NAC, on 5 and 6 August 2014. The scale of these images (2.44−2.03 m/px) is such that boulders ≥7 m can be identified and manually extracted from the datasets with the software ArcGIS. We derived both global and localized size-frequency distributions. The three-pixel sampling detection, coupled with the favorable shadowing of the surface (observation phase angle ranging from 48° to 53°), enables unequivocally detecting boulders scattered all over the illuminated side of 67P. Results. We identify 3546 boulders larger than 7 m on the imaged surface (36.4 km2), with a global number density of nearly 100/km2 and a cumulative size-frequency distribution represented by a power-law with index of −3.6 +0.2/−0.3. The two lobes of 67P appear to have slightly different distributions, with an index of −3.5 +0.2/−0.3 for the main lobe (body) and −4.0 +0.3/−0.2 for the small lobe (head). The steeper distribution of the small lobe might be due to a more pervasive fracturing. The difference of the distribution for the connecting region (neck) is much more significant, with an index value of −2.2 +0.2/−0.2. We propose that the boulder field located in the neck area is the result of blocks falling from the contiguous Hathor cliff. The lower slope of the size-frequency distribution we see today in the neck area might be due to the concurrent processes acting on the smallest boulders, such as i) disintegration or fragmentation and vanishing through sublimation; ii) uplifting by gas drag and consequent redistribution; and iii) burial beneath a debris blanket. We also derived the cumulative size-frequency distribution per km2 of localized areas on 67P. By comparing the cumulative size-frequency distributions of similar geomorphological settings, we derived similar power-law index values. This suggests that despite the selected locations on different and often opposite sides of the comet, similar sublimation or activity processes, pit formation or collapses, as well as thermal stresses or fracturing events occurred on multiple areas of the comet, shaping its surface into the appearance we see today.
Resumo:
Critical measurements for understanding accretion and the dust/gas ratio in the solar nebula, where planets were forming 4.5 billion years ago, are being obtained by the GIADA (Grain Impact Analyser and Dust Accumulator) experiment on the European Space Agency's Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko. Between 3.6 and 3.4 astronomical units inbound, GIADA and OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) detected 35 outflowing grains of mass 10(-10) to 10(-7) kilograms, and 48 grains of mass 10(-5) to 10(-2) kilograms, respectively. Combined with gas data from the MIRO (Microwave Instrument for the Rosetta Orbiter) and ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instruments, we find a dust/gas mass ratio of 4 +/- 2 averaged over the sunlit nucleus surface. A cloud of larger grains also encircles the nucleus in bound orbits from the previous perihelion. The largest orbiting clumps are meter-sized, confirming the dust/gas ratio of 3 inferred at perihelion from models of dust comae and trails.
Resumo:
Images from the OSIRIS scientific imaging system onboard Rosetta show that the nucleus of 67P/Churyumov-Gerasimenko consists of two lobes connected by a short neck. The nucleus has a bulk density less than half that of water. Activity at a distance from the Sun of >3 astronomical units is predominantly from the neck, where jets have been seen consistently. The nucleus rotates about the principal axis of momentum. The surface morphology suggests that the removal of larger volumes of material, possibly via explosive release of subsurface pressure or via creation of overhangs by sublimation, may be a major mass loss process. The shape raises the question of whether the two lobes represent a contact binary formed 4.5 billion years ago, or a single body where a gap has evolved via mass loss.
Resumo:
Images of comet 67P/Churyumov-Gerasimenko acquired by the OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System) imaging system onboard the European Space Agency's Rosetta spacecraft at scales of better than 0.8 meter per pixel show a wide variety of different structures and textures. The data show the importance of airfall, surface dust transport, mass wasting, and insolation weathering for cometary surface evolution, and they offer some support for subsurface fluidization models and mass loss through the ejection of large chunks of material.
Resumo:
Pits have been observed on many cometary nuclei mapped by spacecraft(1-4). It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments(5,6) andmodels(7,8) cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts(8,9). Alternative mechanisms like explosive activity(10) have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov-Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface.
Resumo:
Local mRNA translation in neurons has been mostly studied during axon guidance and synapse formation but not during initial neurite outgrowth. We performed a genome-wide screen for neurite-enriched mRNAs and identified an mRNA that encodes mitogen-activated protein kinase kinase 7 (MKK7), a MAP kinase kinase (MAPKK) for Jun kinase (JNK). We show that MKK7 mRNA localizes to the growth cone where it has the potential to be translated. MKK7 is then specifically phosphorylated in the neurite shaft, where it is part of a MAP kinase signaling module consisting of dual leucine zipper kinase (DLK), MKK7, and JNK1. This triggers Map1b phosphorylation to regulate microtubule bundling leading to neurite elongation. We propose a model in which MKK7 mRNA localization and translation in the growth cone allows for a mechanism to position JNK signaling in the neurite shaft and to specifically link it to regulation of microtubule bundling. At the same time, this uncouples activated JNK from its functions relevant to nuclear translocation and transcriptional activation.
Resumo:
Zusammenfassung Die umfassende kardiologische Rehabilitation ist die Summe von koordinierten Maßnahmen, welche die Folgen von Herzerkrankungen vermindern, die Morbidität und Mortalität reduzieren und die gesundheitsbezogene Lebensqualität einschließlich der psychosozialen Situation der Patienten verbessern sollen. Dazu ist die Bereitstellung strukturierter sekundärpräventiver Strategien besonders wichtig. Schwerpunkte dieser Maßnahmen sind die Trainingstherapie und Aktivitätsberatung sowie Ernährungstherapie und -beratung, Raucherentwöhnung, psychosoziale Intervention und Pharmakotherapie (Ades 2001).
Resumo:
STUDY DESIGN Retrospective analysis of prospectively collected clinical data. OBJECTIVE To assess the long-term outcome of patients with monosegmental L4/5 degenerative spondylolisthesis treated with the dynamic Dynesys device. SUMMARY OF BACKGROUND DATA The Dynesys system has been used as a semirigid, lumbar dorsal pedicular stabilization device since 1994. Good short-term results have been reported, but little is known about the long-term outcome after treatment for degenerative spondylolisthesis at the L4/5 level. METHODS A total of 39 consecutive patients with symptomatic degenerative lumbar spondylolisthesis at the L4/5 level were treated with bilateral decompression and Dynesys instrumentation. At a mean follow-up of 7.2 years (range, 5.0-11.2 y), they underwent clinical and radiographic evaluation and quality of life assessment. RESULTS At final follow-up, back pain improved in 89% and leg pain improved in 86% of patients compared with preoperative status. Eighty-three percent of patients reported global subjective improvement. Ninety-two percent would undergo the surgery again. Eight patients (21%) required further surgery because of symptomatic adjacent segment disease (6 cases), late-onset infection (1 case), and screw breakage (1 case). In 9 cases, radiologic progression of spondylolisthesis at the operated segment was found. Seventy-four percent of operated segments showed limited flexion-extension range of <4 degrees. Adjacent segment pathology, although without clinical correlation, was diagnosed at the L5/S1 (17.9%) and L3/4 (28.2%) segments. In 4 cases, asymptomatic screw loosening was observed. CONCLUSIONS Monosegmental Dynesys instrumentation of degenerative spondylolisthesis at L4/5 shows good long-term results. The rate of secondary surgeries is comparable to other dorsal instrumentation devices. Residual range of motion in the stabilized segment is reduced, and the rate of radiologic and symptomatic adjacent segment degeneration is low. Patient satisfaction is high. Dynesys stabilization of symptomatic L4/5 degenerative spondylolisthesis is a possible alternative to other stabilization devices.