213 resultados para Computers in Earth Sciences


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water flow and solute transport through soils are strongly influenced by the spatial arrangement of soil materials with different hydraulic and chemical properties. Knowing the specific or statistical arrangement of these materials is considered as a key toward improved predictions of solute transport. Our aim was to obtain two-dimensional material maps from photographs of exposed profiles. We developed a segmentation and classification procedure and applied it to the images of a very heterogeneous sand tank, which was used for a series of flow and transport experiments. The segmentation was based on thresholds of soil color, estimated from local median gray values, and of soil texture, estimated from local coefficients of variation of gray values. Important steps were the correction of inhomogeneous illumination and reflection, and the incorporation of prior knowledge in filters used to extract the image features and to smooth the results morphologically. We could check and confirm the success of our mapping by comparing the estimated with the designed sand distribution in the tank. The resulting material map was used later as input to model flow and transport through the sand tank. Similar segmentation procedures may be applied to any high-density raster data, including photographs or spectral scans of field profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The translational diffusion of water in compacted clays at a high hydration level has been investigated by quasielastic neutron scattering at a time-of-flight spectrometer FOCUS (SINQ). Four compacted clays with systematic structural differences have been studied: Na-montmorillonite, Na-illite, kaolinite and pyrophyllite. The QENS experiments were performed using two different incident wavelengths in order to access a larger Q range and verify the data analysis. The translational diffusion coefficient for water in Na-montmorillonite and Na-illite are lower than those for bulk water, whereas the preliminary results for kaolinite and pyrophyllite show larger diffusion coefficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The freezing behavior of water confined in compacted charged and uncharged clays (montmorillonite in Na-and Ca-forms, illite in Na-and Ca-forms, kaolinite and pyrophyllite) was investigated by neutron scattering. Firstly, the amount of frozen (immobile) water was measured as a function of temperature at the IN16 backscattering spectrometer, Institute Laue-Langevin (ILL). Water in uncharged, partly hydrophobic (kaolinite) and fully hydrophobic (pyrophyllite) clays exhibited a similar freezing and melting behavior to that of bulk water. In contrast, water in charged clays which are hydrophilic could be significantly supercooled. To observe the water dynamics in these clays, further experiments were performed using quasielastic neutron scattering. At temperatures of 250, 260 and 270 K the diffusive motion of water could still be observed, but with a strong reduction in the water mobility as compared with the values obtained above 273 K. The diffusion coefficients followed a non-Arrhenius temperature dependence well described by the Vogel-Fulcher-Tammann and the fractional power relations. The fits revealed that Na-and Ca-montmorillonite and Ca-illite have similar Vogel-Fulcher-Tammann temperatures (T-VFT, often referred to as the glass transition temperature) of similar to 120 K and similar temperatures at which the water undergoes the 'strong-fragile' transition, T-s similar to 210 K. On the other hand, Na-illite had significantly larger values of T-VFT similar to 180 K and T-s similar to 240 K. Surprisingly, Ca-illite has a similar freezing behavior of water to that of montmorillonites, even though it has a rather different structure. We attribute this to the stronger hydration of Ca ions as compared with the Na ions occurring in the illite clays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ diffusion experiments are performed in geological formations at underground research laboratories to overcome the limitations of laboratory diffusion experiments and investigate scale effects. Tracer concentrations are monitored at the injection interval during the experiment (dilution data) and measured from host rock samples around the injection interval at the end of the experiment (overcoring data). Diffusion and sorption parameters are derived from the inverse numerical modeling of the measured tracer data. The identifiability and the uncertainties of tritium and Na-22(+) diffusion and sorption parameters are studied here by synthetic experiments having the same characteristics as the in situ diffusion and retention (DR) experiment performed on Opalinus Clay. Contrary to previous identifiability analyses of in situ diffusion experiments, which used either dilution or overcoring data at approximate locations, our analysis of the parameter identifiability relies simultaneously on dilution and overcoring data, accounts for the actual position of the overcoring samples in the claystone, uses realistic values of the standard deviation of the measurement errors, relies on model identification criteria to select the most appropriate hypothesis about the existence of a borehole disturbed zone and addresses the effect of errors in the location of the sampling profiles. The simultaneous use of dilution and overcoring data provides accurate parameter estimates in the presence of measurement errors, allows the identification of the right hypothesis about the borehole disturbed zone and diminishes other model uncertainties such as those caused by errors in the volume of the circulation system and the effective diffusion coefficient of the filter. The proper interpretation of the experiment requires the right hypothesis about the borehole disturbed zone. A wrong assumption leads to large estimation errors. The use of model identification criteria helps in the selection of the best model. Small errors in the depth of the overcoring samples lead to large parameter estimation errors. Therefore, attention should be paid to minimize the errors in positioning the depth of the samples. The results of the identifiability analysis do not depend on the particular realization of random numbers. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Opalinus Clay formation in North Switzerland is a potential host rock for a deep underground radioactive waste repository. The distribution of U-238, U-234 and Th-230 was studied in rock samples of the Opalinus Clay from an exploratory borehole at Benken (Canton of Zurich) using MC-ICP-MS. The aim of U-234 was to assess the in situ, long-term migration behaviour in this rock. Very low hydraulic conductivities of the Opalinus Clay, reducing potential of the pore water and its chemical equilibrium with the host rock are expected to render both U-238 and Th-230 immobile. If U is heterogeneously distributed in the Opalinus Clay, gradients in the supply of U-234 from the rock matrix to the pore water by the decay of U-238 will be established. Diffusive redistribution separates U-234 from its immobile parent U-238 resulting in bulk rock U-234/U-238 activity disequilibria. These may provide a means of estimating the mobility of U-234 in the rock if the diffusion rate of U-234 is significant compared to its decay rate. Sampling was carried out on two scales. Drilling of cm-spaced samples from the drill-core was done to study mobility over short distances and elucidate possible small-scale lithological control. Homogenized 25-cm-long portions of a 2-m-long drill-core section were prepared to provide information on transport over a longer distance. Variations in U and/or Th content on the cm-scale between clays and carbonate-sandy layers are revealed by beta-scanning, which shows that the (dominant) clay is richer in both elements. Samples were digested using aqua regia followed by total HF dissolution, yielding two fractions. in all studied samples U was found to be concentrated in the HF digestion fraction. It has a high U/Th ratio and a study by SEM-EDS points to sub-mu m up to several mu m in size zircon grains as the main U-rich phase. This fraction consistently has U-234/U-238 activity ratios below unity. The minute zircon grains constitute the major reservoir of U in the rock and act as constant rate suppliers of U-234 into the rock matrix and the pore water. The aqua regia leach fraction was found to be enriched in Th, and complementary to the HF fraction, having U-234/U-238 activity ratios above unity. It is believed that these U activity ratios reflect the surplus of having U-234 delivered from the zircon grains. Some cm-spaced samples show bulk rock U-234/U-238 activity ratios that are markedly out of equilibrium. In most of them a striking negative correlation between the total U content and the bulk rock U-234/U-238 activity ratios is observed. This is interpreted to indicate net U-234 transfer from regions of higher supply of U-234 towards those of lower supply which is, in most cases, equivalent to transfer from clayey towards carbonate/sandy portions of the rock. In contrast, the 25 cm averaged samples all have uniform bulk rock U-234/U-238 activity ratios in equilibrium, indicating U immobility in the last 1-1.5 Ma on this spatial scale. It is concluded that the small-scale lithological variations which govern U spatial distribution in the Opalinus Clay are the major factor determining U-234 in situ supply rates, regulating its diffusive fluxes and controlling the observed bulk rock U-234/U-238 activity ratios. A simple box-model is presented to simulate the measured bulk rock U-234/U-238 activity ratios and to give an additional insight into the studied system. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas diffusion research in soils covers, to a large extent, the transport behavior of practically insoluble gases. We extend the mathematical description of gas transport to include reactive gaseous components that hydrolyze in water such as SO2 and CO2. The path between the free atmosphere and the microporous niches is modeled by assuming penetration through gas-filled macropores, air-water phase transfer, and diffusion and speciation in the liquid phase. For hydrolyzable gases, the rate of mass transfer into and the total absorption capacity of the soil solution may be high. Both the capacity and the transfer rate are influenced by the soil-solution pH; for high pH, they become extremely high for SO2. The soil absorption of such gases is also influenced by soil structure. Well-aerated, near-neutral soils are a potentially important sink for SO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A water desaturation zone develops around a tunnel in water-saturated rock when the evaporative water loss at the rock surface is larger than the water flow from the surrounding saturated region of restricted permeability. We describe the methods with which such water desaturation processes in rock materials can be quantified. The water retention characteristic theta(psi) of crystalline rock samples was determined with a pressure membrane apparatus. The negative water potential, identical to the capillary pressure, psi, below the tensiometric range (psi < -0.1 MPa) can be measured with thermocouple psychrometers (TP), and the volumetric water contents, theta, by means of time domain reflectometry (TDR). These standard methods were adapted for measuring the water status in a macroscopically unfissured granodiorite with a total porosity of approximately 0.01. The measured water retention curve of granodiorite samples from the Grimsel test site (central Switzerland) exhibits a shape which is typical for bimodal pore size distributions. The measured bimodality is probably an artifact of a large surface ratio of solid/voids. The thermocouples were installed without a metallic screen using the cavity drilled into the granodiorite as a measuring chamber. The water potentials observed in a cylindrical granodiorite monolith ranged between -0.1 and -3.0 MPa; those near the wall in a ventilated tunnel between -0.1 and -2.2 MPa. Two types of three-rod TDR Probes were used, one as a depth probe inserted into the rock, the other as a surface probe using three copper stripes attached to the surface for detecting water content changes in the rock-to-air boundary. The TDR signal was smoothed with a low-pass filter, and the signal length determined based on the first derivative of the trace. Despite the low porosity of crystalline rock these standard methods are applicable to describe the unsaturated zone in solid rock and may also be used in other consolidated materials such as concrete.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clays and claystones are used as backfill and barrier materials in the design of waste repositories, because they act as hydraulic barriers and retain contaminants. Transport through such barriers occurs mainly by molecular diffusion. There is thus an interest to relate the diffusion properties of clays to their structural properties. In previous work, we have developed a concept for up-scaling pore-scale molecular diffusion coefficients using a grid-based model for the sample pore structure. Here we present an operational algorithm which can generate such model pore structures of polymineral materials. The obtained pore maps match the rock’s mineralogical components and its macroscopic properties such as porosity, grain and pore size distributions. Representative ensembles of grains in 2D or 3D are created by a lattice Monte Carlo (MC) method, which minimizes the interfacial energy of grains starting from an initial grain distribution. Pores are generated at grain boundaries and/or within grains. The method is general and allows to generate anisotropic structures with grains of approximately predetermined shapes, or with mixtures of different grain types. A specific focus of this study was on the simulation of clay-like materials. The generated clay pore maps were then used to derive upscaled effective diffusion coefficients for non-sorbing tracers using a homogenization technique. The large number of generated maps allowed to check the relations between micro-structural features of clays and their effective transport parameters, as is required to explain and extrapolate experimental diffusion results. As examples, we present a set of 2D and 3D simulations and investigated the effects of nanopores within particles (interlayer pores) and micropores between particles. Archie’s simple power law is followed in systems with only micropores. When nanopores are present, additional parameters are required; the data reveal that effective diffusion coefficients could be described by a sum of two power functions, related to the micro- and nanoporosity. We further used the model to investigate the relationships between particle orientation and effective transport properties of the sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a dye tracer experiment in a sand tank we addressed the problem of local dispersion of conservative tracers in the unsaturated zone. The sand bedding was designed to have a defined spatial heterogeneity with a strong anisotropy. We estimated the parameters that characterize the local dispersion and dilution from concentration maps of a high spatial and temporal resolution obtained by image analysis. The plume spreading and mixing behavior was quantified on the basis of the coefficient of variation of the concentration and of the dilution index. The heterogeneous structure modified the flow pattern depending on water saturation. The shape of the tracer plumes revealed the structural signature of the sand bedding at low saturation only. In this case pronounced preferential flow was observed. At higher flow rates the structure remained hidden by a spatially almost homogeneous behavior of the plumes. In this context, we mainly discuss the mechanism of re-distributing a finite mass of inert solutes over a large volume, due to macro- and micro-heterogeneities of the structure. (C) 2001 Elsevier Science Ltd. AU rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geological and pedological processes rarely form isotropic media as is usually assumed in transport studies. Anisotropy at the Darcy or field scale may be detected directly by measuring flow parameters or may become indirectly evident from movement and shape of solute plumes. Anisotropic behavior of a soil at one scale may, in many cases, be related to the presence of lower-scale directional structures. Miller similitude with different pore-scale geometries of the basic element is used to model macroscopic flow and transport behavior. Analytical expressions for the anisotropic conductivity tensor are derived based on the dynamic law that governs the flow problem at the pore scale. The effects of anisotropy on transport parameters are estimated by numerical modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diffusion properties of the Opalinus Clay were studied in the underground research laboratory at Mont Terri (Canton Jura, Switzerland) and the results were compared with diffusion data measured in the laboratory on small-scale samples. The diffusion of HTO, Na-22(+), Cs+ and I- were investigated for a period of 10 months. The diffusion equipment used in the field experiment was designed in such a way that a solution of tracers was circulated through a sintered metal screen placed at the end of a borehole drilled in the formation. The concentration decrease caused by the diffusion of tracers into the rock could be followed with time and allowed first estimations of the effective diffusion coefficient. After 10 months, the diffusion zone was over-cored and the tracer profiles measured. From these profiles, effective diffusion coefficients and rock capacity factors Could be extracted by applying a two-dimensional transport model including diffusion and sorption. The simulations were done with the reactive transport code CRUNCH. In addition, results obtained from through-diffusion experiments oil small-sized samples with HTO, Cl-36(-) and Na-22(+) are presented and compared with the in situ data. In all cases. excellent agreement between the two data sets exists. Results for Cs+ indicated five times higher diffusion rates relative to HTO. Corresponding laboratory diffusion measurements are still lacking. However. our Cs+ data are in qualitative agreement wish through-diffusion data for Callovo-Oxfordian argillite rock samples. which also indicate significantly higher effective diffusivities for Cs+ relative to HTO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The migration of radioactive and chemical contaminants in clay materials and argillaceous host rocks is characterised by diffusion and retention processes. Valuable information on such processes can be gained by combining diffusion studies at laboratory scale with field migration tests. In this work, the outcome of a multi-tracer in situ migration test performed in the Opalinus Clay formation in the Mont Terri underground rock laboratory (Switzerland) is presented. Thus, 1.16 x 10(5) Bq/L of HTO, 3.96 x 10(3) Bq/L of Sr-85, 6.29 x 10(2) Bq/L of Co-60, 2.01 x 10(-3) mol/L Cs, 9.10 x 10(-4) mol/L I and 1.04 x 10(-3) mol/L Br were injected into the borehole. The decrease of the radioisotope concentrations in the borehole was monitored using in situ gamma-spectrometry. The other tracers were analyzed with state-of-the-art laboratory procedures after sampling of small water aliquots from the reservoir. The diffusion experiment was carried out over a period of one year after which the interval section was overcored and analyzed. Based on the experimental data from the tracer evolution in the borehole and the tracer profiles in the rock, the diffusion of tracers was modelled with the numerical code CRUNCH. The results obtained for HTO (H-3), I- and Br- confirm previous lab and in situ diffusion data. Anionic fluxes into the formation were smaller compared to HTO because of anion exclusion effects. The migration of the cations Sr-85(2+), Cs+ and Co-60(2+) was found to be governed by both diffusion and sorption processes. For Sr-85(2+), the slightly higher diffusivity relative to HTO and the low sorption value are consistent with laboratory diffusion measurements on small-scale samples. In the case of Cs+, the numerically deduced high diffusivity and the Freundlich-type sorption behaviour is also supported by ongoing laboratory data. For Co, no laboratory diffusion data were yet available for comparison; however, the modelled data suggests that Co-60(2+) sorption was weaker than would be expected from available batch sorption data. Overall, the results demonstrate the feasibility of the experimental setup for obtaining high-quality diffusion data for conservative and sorbing tracers. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chloride and sulfate concentration profiles in a 260 m thick clay-rich Mesozoic sediment sequence have been analyzed by various methods. Chloride data generally indicate a good consistency between different methods if anion exclusion is accounted for in leaching tests. For sulfate, however, there is an apparent inconsistency between leaching data and those obtained from the other methods, which points to the dissolution of a sulfur-bearing mineral. Traces of diagenetic gypsum seem to be a likely source, but other sulfur minerals cannot be ruled out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Atlantic subpolar gyre (SPG) is one of the main drivers of decadal climate variability in the North Atlantic. Here we analyze its dynamics in pre-industrial control simulations of 19 different comprehensive coupled climate models. The analysis is based on a recently proposed description of the SPG dynamics that found the circulation to be potentially bistable due to a positive feedback mechanism including salt transport and enhanced deep convection in the SPG center. We employ a statistical method to identify multiple equilibria in time series that are subject to strong noise and analyze composite fields to assess whether the bistability results from the hypothesized feedback mechanism. Because noise dominates the time series in most models, multiple circulation modes can unambiguously be detected in only six models. Four of these six models confirm that the intensification is caused by the positive feedback mechanism.