232 resultados para Cartilage articulaire


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lack of beta1 integrins on chondrocytes leads to severe chondrodysplasia associated with high mortality rate around birth. To assess the impact of beta1 integrin-mediated cell-matrix interactions on the function of adult knee joints, we conditionally deleted the beta1 integrin gene in early limb mesenchyme using the Prx1-cre transgene. Mutant mice developed short limbed dwarfism and had joint defects due to beta1 integrin deficiency in articular regions. The articular cartilage (AC) was structurally disorganized, accompanied by accelerated terminal differentiation, altered shape, and disrupted actin cytoskeleton of the chondrocytes. Defects in chondrocyte proliferation, cytokinesis, and survival resulted in hypocellularity. However, no significant differences in cartilage erosion, in the expression of matrix-degrading proteases, or in the exposure of aggrecan and collagen II cleavage neoepitopes were observed between control and mutant AC. We found no evidence for disturbed activation of MAPKs (ERK1/2, p38, and JNK) in vivo. Furthermore, fibronectin fragment-stimulated ERK activation and MMP-13 expression were indistinguishable in control and mutant femoral head explants. The mutant synovium was hyperplastic and frequently underwent chondrogenic differentiation. beta1-null synoviocytes showed increased proliferation and phospho-focal adhesion kinase expression. Taken together, deletion of beta1 integrins in the limb bud results in multiple abnormalities of the knee joints; however, it does not accelerate AC destruction, perturb cartilage metabolism, or influence intracellular MAPK signaling pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of cyclosporine A during the development phase of adjuvant arthritis was studied in 40 female rats. Five groups of eight animals each received oral cyclosporine, 2.5, 5, 10, 20, or 30 mg/kg daily for 30 days. Also, eight normal and eight diseased rats served as placebo controls. At the time of inoculation of the adjuvant suspension on day 0, measurement of disease parameters (paw swelling and vertebral density) was started concomitantly with beginning of therapy. On completion of the study, the animals were killed, and after measurement of total skeletal and segmental (hind legs and caudal spine plus two caudal vertebrae) calcium, the two assessed vertebrae and both femoral condyles were removed for histomorphometric evaluation (vertebrae) and for estimation of glycosaminoglycan (GAG) content of cartilage. Blood for osteocalcin determinations also was taken at term from control and untreated arthritic rats and from animals that had received 10 mg/kg cyclosporine. Treatment with 2.5 mg/kg was ineffective, but doses between 5 and 20 mg/kg prevented the development of articular and osseous lesions. The 20 mg/kg dose showed no better effect than 10 mg/kg. This was shown by the absence of inflammation and the presence of normal condylar GAG and total mineral content in the areas screened. Untreated animals showed marked reductions in all of these parameters. The 30 mg/kg dose was effective in blocking the GAG loss, but significant reductions in bone density and trabecular volume were seen. There was a close correlation between GAG and bone density values, suggesting a common causal relationship. Circulating osteocalcin was significantly elevated in the untreated animals with adjuvant arthritis.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abnormal patterns of cell death, including increased apoptosis, can influence homeostasis of ligaments and could be involved in the pathogenesis of cranial cruciate ligament (CCL) rupture. Increased nitric oxide (NO) production has been implicated as a stimulus to increased apoptosis in articular cartilage. This study investigated apoptotic cell death in ruptured canine CCL (CCL group, n = 15), in ruptured CCL of dogs treated with oral L-N6-(1-iminoethyl)-lysine (L-NIL), a selective NO-synthetase(NOS)-inhibitor, (L-NIL group, n = 15) and compared the results with normal canine CCL (control group, n = 10). Orally administered L-NIL at a dosage of 25mg/m2 of body surface area was effective in inhibiting NO production in the articular cartilage of dogs in the L-NIL group, but it did not significantly influence the increased quantity of apoptotic cells found in ruptured CCL specimens. The results of this study suggest that apoptosis of ligamentocytes in the canine CCL is not primarily influenced by increased NO production within the stifle joint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Induction chemotherapy followed by definitive chemoradiotherapy is an intensified treatment approach for locally advanced squamous cell carcinoma of the head and neck (HNSCC) that might be associated with high rates of toxicity. MATERIALS AND METHODS The data of 40 consecutive patients who underwent induction chemotherapy with docetaxel-containing regimens followed by intensity-modulated radiotherapy (IMRT) and concomitant systemic therapy for unresectable locally advanced HNSCC were retrospectively analyzed. Primary objectives were RT-related acute and late toxicity. Secondary objectives were response to induction chemotherapy, locoregional recurrence-free survival (LRRFS), overall survival (OS), and influencing factors for LRRFS and OS. RESULTS The median follow-up for surviving patients was 21 months (range, 2-53 months). Patients received a median of three cycles of induction chemotherapy followed by IMRT to 72 Gy. Three patients died during induction chemotherapy and one during chemoradiotherapy. Acute RT-related toxicity was of grade 3 and 4 in 72 and 3 % of patients, respectively, mainly dysphagia and dermatitis. Late RT-related toxicity was mainly xerostomia and bone/cartilage necrosis and was of grade 3 and 4 in 15 % of patients. One- and 2-year LRRFS and OS were 72 and 49 % and 77 and 71 %, respectively. CONCLUSION Induction chemotherapy followed by chemoradiotherapy using IMRT was associated with a high rate of severe acute and late RT-related toxicities in this selected patient cohort. Four patients were lost because of fatal complications. Induction chemotherapy did not compromise the delivery of full-dose RT; however, the use of three cycles of concomitant cisplatin was impaired.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Osteochondral autograft transfer (OAT) aims at restoring normal articular cartilage surface geometry and articular contact mechanics. To date, no studies have evaluated the contact mechanics of the canine stifle following OAT. Additionally, there are no studies that evaluated the role of the meniscus in contact mechanics following OAT in human or canine femorotibial joints. The objective of this study was to measure the changes in femorotibial contact areas (CA), mean contact pressure (MCP) and peak contact pressure (PCP) before and after osteochondral autograft transplantation (OAT) of a simulated lateral femoral condylar cartilage defect with an intact lateral meniscus and following lateral meniscectomy. RESULTS With an intact lateral meniscus, creation of an osteochondral defect caused a decrease in MCP and PCP by 11% and 30%, respectively, compared to the intact stifle (p < 0.01). With an intact meniscus, implanting an osteochondral graft restored MCP and PCP to 96% (p = 0.56) and 92% (p = 0.41) of the control values. Lateral meniscectomy with grafting decreased CA by 54% and increased PCP by 79% compared to the intact stifle (p < 0.01). CONCLUSIONS OAT restored contact pressures in stifles with a simulated lateral condylar defect when the meniscus was intact. The lateral meniscus has a significant role in maintaining normal contact pressures in both stifles with a defect or following OAT. Meniscectomy should be avoided when a femoral condylar defect is present and when performing OAT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES Femoroacetabular impingement is proposed to cause early osteoarthritis (OA) in the non-dysplastic hip. We previously reported on the prevalence of femoral deformities in a young asymptomatic male population. The aim of this study was to determine the prevalence of both femoral and acetabular types of impingement in young females. METHODS We conducted a population-based cross-sectional study of asymptomatic young females. All participants completed a set of questionnaires and underwent clinical examination of the hip. A random sample was subsequently invited to obtain magnetic resonance images (MRI) of the hip. All MRIs were read for cam-type deformities, increased acetabular depths, labral lesions, and impingement pits. Prevalence estimates of cam-type deformities and increased acetabular depths were estimated, and relationships between deformities and signs of joint damage were examined using logistic regression models. RESULTS The study included 283 subjects, and 80 asymptomatic females with a mean age of 19.3 years attended MRI. Fifteen showed some evidence of cam-type deformities, but none were scored to be definite. The overall prevalence was therefore 0% [95% confidence interval (95% CI) 0-5%]. The prevalence of increased acetabular depth was 10% (95% CI 5-19). No association was found between increased acetabular depth and decreased internal rotation of the hip. Increased acetabular depth was not associated with signs of labral damage. CONCLUSIONS Definite cam-type deformities in women are rare compared to men, whereas the prevalence of increased acetabular depth is higher, suggesting that femoroacetabular impingement has different gender-related biomechanical mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Traditionally arthrotomy has rarely been performed during surgery for slipped capital femoral epiphysis (SCFE). As a result, most pathophysiological information about the articular surfaces was derived clinically and radiographically. Novel insights regarding deformity-induced damage and epiphyseal perfusion became available with surgical hip dislocation. QUESTIONS/PURPOSES We (1) determined the influence of chronicity of prodromal symptoms and severity of SCFE deformity on severity of cartilage damage. (2) In surgically confirmed disconnected epiphyses, we determined the influence of injury and time to surgery on epiphyseal perfusion; and (3) the frequency of new bone at the posterior neck potentially reducing perfusion during epimetaphyseal reduction. METHODS We reviewed 116 patients with 119 SCFE and available records treated between 1996 and 2011. Acetabular cartilage damage was graded as +/++/+++ in 109 of the 119 hips. Epiphyseal perfusion was determined with laser-Doppler flowmetry at capsulotomy and after reduction. Information about bone at the posterior neck was retrieved from operative reports. RESULTS Ninety-seven of 109 hips (89%) had documented cartilage damage; severity was not associated with higher slip angle or chronicity; disconnected epiphyses had less damage. Temporary or definitive cessation of perfusion in disconnected epiphyses increased with time to surgery; posterior bone resection improved the perfusion. In one necrosis, the retinaculum was ruptured; two were in the group with the longest time interval. Posterior bone formation is frequent in disconnected epiphyses, even without prodromal periods. CONCLUSIONS Addressing the cause of cartilage damage (cam impingement) should become an integral part of SCFE surgery. Early surgery for disconnected epiphyses appears to reduce the risk of necrosis. Slip reduction without resection of posterior bone apposition may jeopardize epiphyseal perfusion. LEVEL OF EVIDENCE Level IV, retrospective case series. See Guidelines for Authors for a complete description of levels of evidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2) induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2) and transforming growth factor beta 1 (TGF-ß1) were investigated. METHODOLOGY/PRINCIPAL FINDINGS Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml) for 4 (or 6) weeks. FGF-2 (10 ng/ml) or TGF-ß1 (10 ng/ml) was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs) only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2), but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume. CONCLUSIONS/SIGNIFICANCE TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of clinical repair, our findings will be of importance in fine-tuning the stimulation protocol for the optimal chondrogenic differentiation of synovial explants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sheep hips have a natural non-spherical femoral head similar to a cam-type deformity in human beings. By performing an intertrochanteric varus osteotomy, cam-type femoro-acetabular impingement (FAI) during flexion can be created. We tested the hypotheses that macroscopic lesions of the articular cartilage and an increased Mankin score (MS) can be reproduced by an experimentally induced cam-type FAI in this ovine in vivo model. Furthermore, we hypothesized that the MS increases with longer ambulatory periods. Sixteen sheep underwent unilateral intertrochanteric varus osteotomy of the hip with the non-operated hip as a control. Four sheep were sacrificed after 14, 22, 30, and 38-weeks postoperatively. We evaluated macroscopic chondrolabral alterations, and recorded the MS, based on histochemical staining, for each ambulatory period. A significantly higher prevalence of macroscopic chondrolabral lesions was found in the impingement zone of the operated hips. The MS was significantly higher in the acetabular/femoral cartilage of the operated hips. Furthermore, these scores increased as the length of the ambulatory period increased. Cam-type FAI can be induced in an ovine in vivo model. Localized chondrolabral degeneration of the hip, similar to that seen in humans (Tannast et al., Clin Orthop Relat Res 2008; 466: 273-280; Beck et al., J Bone Joint Surg Br 2005; 87: 1012-1018), can be reproduced. This experimental sheep model can be used to study cam-type FAI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND The treatment of proximal humerus fractures in patients with poor bone quality remains a challenge in trauma surgery. Augmentation with polymethylmethacrylate (PMMA) cement is a possible method to strengthen the implant anchorage in osteoporotic bone and to avoid loss of reduction and reduce the cut-out risk. The polymerisation of PMMA during cement setting leads, however, to an exothermic reaction and the development of supraphysiological temperatures may harm the bone and cartilage. This study addresses the issue of heat development during augmentation of subchondrally placed proximal humerus plate screws with PMMA and the possible risk of bone and cartilage necrosis and apoptosis. METHODS Seven fresh frozen humeri from geriatric female donors were instrumented with the proximal humerus interlocking system (PHILOS) plate and placed in a 37°C water bath. Thereafter, four proximal perforated screws were augmented with 0.5 ml PMMA each. During augmentation, the temperatures in the subchondral bone and on the articular surface were recorded with K-type thermocouples. The measured temperatures were compared to threshold values for necrosis and apoptosis of bone and cartilage reported in the literature. RESULTS The heat development was highest around the augmented tips of the perforated screws and diminished with growing distance from the cement cloud. The highest temperature recorded in the subchondral bone reached 43.5°C and the longest exposure time above 42°C was 86s. The highest temperature measured on the articular surface amounted to 38.6°C and the longest exposure time above 38°C was 5 min and 32s. CONCLUSION The study shows that augmentation of the proximal screws of the PHILOS plate with PMMA leads to a locally limited development of supraphysiological temperatures in the cement cloud and closely around it. The critical threshold values for necrosis and apoptosis of cartilage and subchondral bone reported in the literature, however, are not reached. In order to avoid cement extravasation, special care should be taken in detecting perforations or intra-articular cracks in the humeral head.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surgical management of symptomatic femoroacetabular impingement (FAI) generally is indicated after the failure of a trial of nonsurgical treatment. Surgical planning includes an assessment of the labrochondral pathology as well as of the acetabular and proximal femoral bony deformity. Advanced articular cartilage disease generally is associated with poorer outcomes. Surgical hip dislocation and hip arthroscopy have been used, with favorable early outcomes and low complication rates. Careful patient selection is important in predicting the success of the surgical management of symptomatic FAI. A trial of nonsurgical management generally is recommended, but limited information exists regarding its success. The early outcomes of both open and arthroscopic surgical techniques demonstrate significant improvement in most patients, with relatively low rates of complications. Because poorer clinical outcomes are associated with more advanced articular cartilage degeneration, improved strategies for the earlier identification and disease staging of symptomatic patients may enhance the long-term outcomes of both nonsurgical and surgical management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Future clinical trials investigating the natural history and treatment of femoroacetabular impingement (FAI) will require multimodal staging systems for hip osteoarthritis because the optimal system will differ based on the size of the study population, the specific objective in question, and the time frame in which the investigator expects to see the specified end point. Plain radiographs are readily available, low in cost, and of unquestioned validity, but they are relatively insensitive to early joint damage. MRI allows assessment of both bony and soft-tissue pathology within the joint, and it is much more sensitive for early joint damage because cartilage is visualized directly. Biochemical imaging techniques such as delayed gadolinium-enhanced MRI of cartilage, T2 mapping, and T1rho offer the potential to identify biochemical damage to cartilage before the onset of irreversible tissue loss. In the future, biomarkers may allow earlier detection of osteoarthritis before the development of radiographic evidence of disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(ɛ)caprolactone scaffolds have been electrospun directly into an auricular shaped conductive mould. Bovine chondrocytes were harvested from articular cartilage and seeded onto 16 of the produced scaffolds, which received either an ethanol (group A) or a plasma treatment (group B) for sterilisation before seeding. The seeded scaffolds were cultured for 3 weeks in vitro and analysed with regard to total DNA and GAG content as well as the expression of AGG, COL1, COL2, MMP3 and MMP13. Rapid cell proliferation and GAG accumulation was observed until week 2. However, total DNA and GAG content decreased again in week 3. qPCR data shows a slight increase in the expression of anabolic genes and a slight decrease for the catabolic genes, with a significant difference between the groups A and B only for COL2 and MMP13.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highland cattle with congenital crop ears have notches of variable size on the tips of both ears. In some cases, cartilage deformation can be seen and occasionally the external ears are shortened. We collected 40 cases and 80 controls across Switzerland. Pedigree data analysis confirmed a monogenic autosomal dominant mode of inheritance with variable expressivity. All affected animals could be traced back to a single common ancestor. A genome-wide association study was performed and the causative mutation was mapped to a 4 Mb interval on bovine chromosome 6. The H6 family homeobox 1 (HMX1) gene was selected as a positional and functional candidate gene. By whole genome re-sequencing of an affected Highland cattle, we detected 6 non-synonymous coding sequence variants and two variants in an ultra-conserved element at the HMX1 locus with respect to the reference genome. Of these 8 variants, only a non-coding 76 bp genomic duplication (g.106720058_106720133dup) located in the conserved region was perfectly associated with crop ears. The identified copy number variation probably results in HMX1 misregulation and possible gain-of-function. Our findings confirm the role of HMX1 during the development of the external ear. As it is sometimes difficult to phenotypically diagnose Highland cattle with slight ear notches, genetic testing can now be used to improve selection against this undesired trait.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scaphoid is the most frequently fractured carpal bone. When investigating fixation stability, which may influence healing, knowledge of forces and moments acting on the scaphoid is essential. The aim of this study was to evaluate cartilage contact forces acting on the intact scaphoid in various functional wrist positions using finite element modeling. A novel methodology was utilized as an attempt to overcome some limitations of earlier studies, namely, relatively coarse imaging resolution to assess geometry, assumption of idealized cartilage thicknesses and neglected cartilage pre-stresses in the unloaded joint. Carpal bone positions and articular cartilage geometry were obtained independently by means of high resolution CT imaging and incorporated into finite element (FE) models of the human wrist in eight functional positions. Displacement driven FE analyses were used to resolve inter-penetration of cartilage layers, and provided contact areas, forces and pressure distribution for the scaphoid bone. The results were in the range reported by previous studies. Novel findings of this study were: (i) cartilage thickness was found to be heterogeneous for each bone and vary considerably between carpal bones; (ii) this heterogeneity largely influenced the FE results and (iii) the forces acting on the scaphoid in the unloaded wrist were found to be significant. As major limitations, accuracy of the method was found to be relatively low, and the results could not be compared to independent experiments. The obtained results will be used in a following study to evaluate existing and recently developed screws used to fix scaphoid fractures.