207 resultados para Biology, Molecular|Chemistry, Biochemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied charge transport through core-substituted naphthalenediimide (NDI) single-molecule junctions using the electrochemical STM-based break-junction technique in combination with DFT calculations. Conductance switching among three well-defined states was demonstrated by electrochemically controlling the redox state of the pendent diimide unit of the molecule in an ionic liquid. The electrical conductances of the dianion and neutral states differ by more than one order of magnitude. The potential-dependence of the charge-transport characteristics of the NDI molecules was confirmed by DFT calculations, which account for electrochemical double-layer effects on the conductance of the NDI junctions. This study suggests that integration of a pendant redox unit with strong coupling to a molecular backbone enables the tuning of charge transport through single-molecule devices by controlling their redox states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The correspondence of the state of alignment of macromolecules in biomimetic materials and natural tissues is demonstrated by investigating a mechanism of electrical polarity formation: An in vitro grown biomimetic FAp/gelatin composite is investigated for its polar properties by second harmonic (SHGM) and scanning pyroelectric microscopy (SPEM). Hexagonal prismatic seed crystals formed in gelatin gels represent a monodomain polar state, due to aligned mineralized gelatin molecules. Later growth stages, showing dumbbell morphologies, develop into a bipolar state because of surface recognition by gelatin functionality: A reversal of the polar alignment of macromolecules, thus, takes place close to that basal plane of the seed. In natural hard tissues (teeth and bone investigated by SPEM) and the biomimetic FAp/gelatin composite, we find a surprising analogy in view of growth-induced states of polarity: The development of polarity in vivo and in vitro can be explained by a Markov-type mechanism of molecular recognition during the attachment of macromolecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In trypanosomes, as in other eukaryotes, more than 95% of all mitochondrial proteins are imported into the mitochondrion. The recently characterized multisubunit ATOM complex mediates import of essentially all proteins across the outer mitochondrial membrane in T. brucei. Moreover, an additional protein termed pATOM36, which is loosely associated with the ATOM complex, has been implicated in the import of only a subset of mitochondrial matrix proteins. Here we have investigated more precisely which role pATOM36 plays in mitochondrial protein import. RNAi mediated ablation of pATOM36 specifically depletes a subset of ATOM complex subunits and as a consequence results in the collapse of the ATOM complex as shown by Blue native PAGE. In addition, a SILAC-based global proteomic analysis of uninduced and induced pATOM36 RNAi cells together with in vitro import experiments suggest that pATOM36 might be a novel protein insertase acting on a subset of alpha-helically anchored mitochondrial outer membrane proteins. Identification of pATOM36 interaction partners by co-immunoprecipitation together with immunofluorescence analysis furthermore shows that unexpectedly a fraction of the protein is associated with the tripartite attachment complex (TAC). This complex is essential for proper inheritance of the kDNA as it forms a physical connection between the kDNA and the basal body of the flagellum throughout the cell cycle. Thus, the presence of pATOM36 in the TAC provides an exciting link between mitochondrial protein import and kDNA inheritance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accurate electron density distribution and magnetic properties of two metal-organic polymeric magnets, the quasi-one-dimensional (1D) Cu(pyz)(NO3)2 and the quasi-two-dimensional (2D) [Cu(pyz)2(NO3)]NO3·H2O, have been investigated by high-resolution single-crystal X-ray diffraction and density functional theory calculations on the whole periodic systems and on selected fragments. Topological analyses, based on quantum theory of atoms in molecules, enabled the characterization of possible magnetic exchange pathways and the establishment of relationships between the electron (charge and spin) densities and the exchange-coupling constants. In both compounds, the experimentally observed antiferromagnetic coupling can be quantitatively explained by the Cu-Cu superexchange pathway mediated by the pyrazine bridging ligands, via a σ-type interaction. From topological analyses of experimental charge-density data, we show for the first time that the pyrazine tilt angle does not play a role in determining the strength of the magnetic interaction. Taken in combination with molecular orbital analysis and spin density calculations, we find a synergistic relationship between spin delocalization and spin polarization mechanisms and that both determine the bulk magnetic behavior of these Cu(II)-pyz coordination polymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid-crystalline dendrimers have been prepared from second-generation Percec-type poly(benzyl ether) dendrons or second-generation poly(aryl ester) dendrons carrying cyanobiphenyl mesogens. The Janus dendrimer, which combines the two types of dendromesogens, has also been synthesized. Those compounds have been prepared under copper-catalyzed azide–alkyne cycloaddition conditions. The mesomorphic properties have been studied by thermal analysis (POM, DSC) and small-angle X-ray scattering. Smectic A, nematic, and columnar phases have been observed depending on the dendritic building blocks. The click reaction has proven to be a powerful and elegant synthetic tool for the design of complex dendritic liquid-crystalline architectures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stationary-phase bacterial cells are characterized by vastly reduced metabolic activities yielding a dormant-like phenotype. Several hibernation programs ensure the establishment and maintenance of this resting growth state. Some of the stationary phase-specific modulations affect the ribosome and its translational activity directly. In stationary-phase Escherichia coli, we observed the appearance of a 16S rRNA fragmentation event at the tip of helix 6 within the small ribosomal subunit (30S). Stationary-phase 30S subunits showed markedly reduced activities in protein biosynthesis. On the other hand, the functional performance of stationary-phase large ribosomal subunits (50S) was indistinguishable from particles isolated from exponentially growing cells. Introduction of the 16S rRNA cut in vitro at helix 6 of exponential phase 30S subunits renders them less efficient in protein biosynthesis. This indicates that the helix 6 fragmentation is necessary and sufficient to attenuate translational activities of 30S ribosomal subunits. These results suggest that stationary phase-specific cleavage of 16S rRNA within the 30S subunit is an efficient means to reduce global translation activities under non-proliferating growth conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonsense-mediated mRNA decay (NMD) was originally coined to define a quality control mechanism that targets mRNAs with truncated open reading frames due to the presence of a premature termination codon. Meanwhile, it became clear that NMD has a much broader impact on gene expression and additional biological functions beyond quality control are continuously being discovered. We review here the current views regarding the molecular mechanisms of NMD, according to which NMD ensues on mRNAs that fail to terminate translation properly, and point out the gaps in our understanding. We further summarize the recent literature on an ever-rising spectrum of biological processes in which NMD appears to be involved, including homeostatic control of gene expression, development and differentiation, as well as viral defense.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this short review, we provide some new insights into the material synthesis and characterization of modern multi-component superconducting oxides. Two different approaches such as the high-pressure, high-temperature method and ceramic combinatorial chemistry will be reported with application to several typical examples. First, we highlight the key role of the extreme conditions in the growth of Fe-based superconductors, where a careful control of the composition-structure relation is vital for understanding the microscopic physics. The availability of high-quality LnFeAsO (Ln = lanthanide) single crystals with substitution of O by F, Sm by Th, Fe by Co, and As by P allowed us to measure intrinsic and anisotropic superconducting properties such as Hc2, Jc. Furthermore, we demonstrate that combinatorial ceramic chemistry is an efficient way to search for new superconducting compounds. A single-sample synthesis concept based on multi-element ceramic mixtures can produce a variety of local products. Such a system needs local probe analyses and separation techniques to identify compounds of interest. We present the results obtained from random mixtures of Ca, Sr, Ba, La, Zr, Pb, Tl, Y, Bi, and Cu oxides reacted at different conditions. By adding Zr but removing Tl, Y, and Bi, the bulk state superconductivity got enhanced up to about 122 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymeric two- and three-dimensional, homo- and heterometallic oxalatebridged coordination compounds offer exciting opportunities, mainly in the fields of molecular magnetism and photophysics. Given that a large variety of magnetic phenomena have been reported so far from these molecular magnets, very limited experience is gained from elastic neutron scattering experiments. Therefore, with two examples, we will address the topic of the elucidation of magnetic structures by means of the neutron scattering technique. In addition, due to the possibility of the variation of different metal ions in varying oxidation states, interesting photophysical processes can be observed within the extended three-dimensional host/guest systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As translation is the final step in gene expression it is particularly important to understand the processes involved in translation regulation. It was shown in the last years that a class of RNA, the nonprotein-coding RNAs (ncRNAs), is involved in regulation of gene expression via various mechanisms (e.g. gene silencing by microRNAs). Almost all of these ncRNA discovered so far target the mRNA in order to modulate protein biosynthesis, this is rather unexpected considering the crucial role of the ribosome during gene expression. However, recent data from our laboratory showed that there is a new class of ncRNAs, which target the ribosome itself [Gebetsberger et al., 2012/ Pircher et al, 2014]. These so called ribosome-associated ncRNAs (rancRNAs) have an impact on translation regulation, mainly by interfering / modulating the rate of protein biosynthesis. The main goal of this project is to identify and describe novel potential regulatory rancRNAs in H. volcanii with the focus on intergenic candidates. Northern blot analyses already revealed interactions with the ribosome and showed differential expression of rancRNAs during different growth phases or under specific stress conditions. To investigate the biological relevance of these rancRNAs, knock-outs were generated in H. volcanii which were used for phenotypic characterization studies. The rancRNA s194 showed association with the 50S ribosomal subunit in vitro and in vivo and was capable of inhibiting peptide bond formation. These preliminary data for the rancRNA s194 make it an interesting candidate for further functional studies to identify the molecular mechanisms by which rancRNAs can modulate protein biosynthesis. Characterization of further rancRNA candidates are also underway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-organic heterojunctions are nowadays highly regarded materials for light-emitting diodes, field-effect transistors, and photovoltaic cells with the prospect of designing low-cost, flexible, and efficient electronic devices.1-3 However, the key parameter of optimized heterojunctions relies on the choice of the molecular compounds as well as on the morphology of the organic-organic interface,4 which thus requires fundamental studies. In this work, we investigated the deposition of C60 molecules at room temperature on an organic layer compound, the salt bis(benzylammonium)bis(oxalato)cupurate(II), by means of noncontact atomic force microscopy. Three-dimensional molecular islands of C60 having either triangular or hexagonal shapes are formed on the substrate following a "Volmer-Weber" type of growth. We demonstrate the dynamical reshaping of those C60 nanostructures under the local action of the AFM tip at room temperature. The dissipated energy is about 75 meV and can be interpreted as the activation energy required for this migration process.