355 resultados para stent thrombosis
Resumo:
Thrombosis of the inferior vena cava is a life-threatening complication in cancer patients leading to pulmonary embolism. These patients can also be affected by superior vena cava syndrome causing dyspnea followed by trunk or extremity swelling. We report the case of a 61-year-old female suffering from an extended colorectal tumor who became affected by both of the mentioned complications. Due to thrombus formation within the right vena jugularis interna, thrombosis of the inferior vena cava, and superior vena cava syndrome, a combined interventional procedure via a left jugular access with stenting of the superior vena cava and filter placement into the inferior vena cava was performed As a consequence, relief of the patient's symptoms, prevention of pulmonary embolism, and paving of the way for further venous chemotherapy were achieved.
Resumo:
PURPOSE: To evaluate the primary success and short-term patency associated with a new 4-F sheath-compatible self-expanding nitinol stent after failed conventional angioplasty of distal popliteal and infrapopliteal lesions in severe lifestyle-limiting claudication (LLC) and chronic critical limb ischemia (CLI). MATERIALS AND METHODS: Between May 2003 and July 2005, 35 patients with Rutherford category 3-5 disease (16 patients with CLI, 19 patients with LLC) underwent percutaneous transluminal angioplasty (PTA) and stent implantation. Indications for stent placement were residual stenosis, flow-limiting dissections, or elastic recoil after PTA. Before and after the intervention and during the 6-month follow-up, clinical investigation, color-flow and duplex Doppler ultrasonography, and digital subtraction angiography were performed. Technical success, primary patency at 6 months, clinical improvement as defined by Rutherford with clinical and hemodynamic measures, and complications were evaluated. RESULTS: A total of 22 patients underwent distal popliteal artery stent placement and 13 underwent tibioperoneal artery stent placement. Stent implantation was successfully performed in all patients. After stent placement, the primary cumulative patency rate for the study group at 6 months was 82%. The mean resting ankle-brachial index at baseline was 0.50 +/- 0.16 and significantly increased to 0.90 +/- 0.17 at 12-24 hours after intervention and 0.82 +/- 0.24 at latest follow-up (P < .001 for both). The sustained clinical improvement rate was 80% at the 6-month follow-up. The 6-month limb salvage rate regarding major amputation was 100%. The rate of major complications was 17%. CONCLUSIONS: Infrapopliteal application of the new nitinol stent is a safe, feasible, and effective method with good short-term patency rate in the treatment of severe LLC and chronic CLI.
Resumo:
OBJECTIVES: This study sought to evaluate the diagnostic accuracy of coronary binary in-stent restenosis (ISR) with angiography using 64-slice multislice computed tomography coronary angiography (CTCA) compared with invasive coronary angiography (ICA). BACKGROUND: A noninvasive detection of ISR would result in an easier and safer way to conduct patient follow-up. METHODS: We performed CTCA in 81 patients after stent implantation, and 125 stented lesions were scanned. Two sets of images were reconstructed with different types of convolution kernels. On CTCA, neointimal proliferation was visually evaluated according to luminal contrast attenuation inside the stent. Lesions were graded as follows: grade 1, none or slight neointimal proliferation; grade 2, neointimal proliferation with no significant stenosis (<50%); grade 3, neointimal proliferation with moderate stenosis (> or =50%); and grade 4, neointimal proliferation with severe stenosis (> or =75%). Grades 3 and 4 were considered binary ISR. The diagnostic accuracy of CTCA compared with ICA was evaluated. RESULTS: By ICA, 24 ISRs were diagnosed. Sensitivity, specificity, positive predictive value, and negative predictive value were 92%, 81%, 54%, and 98% for the overall population, whereas values were 91%, 93%, 77%, and 98% when excluding unassessable segments (15 segments, 12%). For assessable segments, CTCA correctly diagnosed 20 of the 22 ISRs detected by ICA. Six lesions without ISR were overestimated as ISR by CTCA. As the grade of neointimal proliferation by CTCA increases, the median value of percent diameter stenosis increased linearly. CONCLUSIONS: Binary ISR can be excluded with high probability by CTCA, with a moderate rate of false-positive results.
Resumo:
BACKGROUND: Paclitaxel-eluting stents (PES) have been shown to reduce the rate of restenosis and the need for repeated revascularization procedures compared with bare metal stents. However, long-term effects of paclitaxel on vascular function are unknown. The purpose of the present study was to assess coronary vasomotor response to exercise after paclitaxel-eluting stent implantation. METHODS: Coronary vasomotion was evaluated by biplane quantitative coronary angiography at rest and during supine bicycle exercise in 27 patients with coronary artery disease. Twelve patients were treated with a bare metal stent (controls), and fifteen patients with a paclitaxel-eluting stent. All patients were restudied 6+/-2 (range 2-12) months after stent implantation. Minimal luminal diameter, stent diameter, proximal, distal and a reference vessel diameter were determined. RESULTS: Reference vessels showed exercise-induced vasodilation in both groups (+20+/-5% controls; +26+/-3% PES group). Vasomotion within the stented vessel segments was abolished. In the controls, the adjacent segments proximal and distal to the stent showed exercise-induced vasodilation (+17+/-3% and +24+/-4%). In contrast, there was exercise-induced vasoconstriction of the proximal and distal vessel segments adjacent to the paclitaxel-eluting stent (-13+/-6% and -18+/-4%; p<0.005). After sublingual nitroglycerin, the proximal and distal vessel segments dilated in both groups. Exercise-induced vasoconstriction adjacent to paclitaxel-eluting stent correlated inversely with the time interval after stent implantation. CONCLUSIONS: Paclitaxel-eluting stent implantation is associated with exercise-induced vasoconstriction in the persistent region suggesting endothelial dysfunction as the underlying mechanism. Improvement of vascular function occurs over time, indicating delayed vascular healing.
Resumo:
We aimed at assessing stent geometry and in-stent contrast attenuation with 64-slice CT in patients with various coronary stents. Twenty-nine patients (mean age 60 +/- 11 years; 24 men) with 50 stents underwent CT within 2 weeks after stent placement. Mean in-stent luminal diameter and reference vessel diameter proximal and distal to the stent were assessed with CT, and compared to quantitative coronary angiography (QCA). Stent length was also compared to the manufacturer's values. Images were reconstructed using a medium-smooth (B30f) and sharp (B46f) kernel. All 50 stents could be visualized with CT. Mean in-stent luminal diameter was systematically underestimated with CT compared to QCA (1.60 +/- 0.39 mm versus 2.49 +/- 0.45 mm; P < 0.0001), resulting in a modest correlation of QCA versus CT (r = 0.49; P < 0.0001). Stent length as given by the manufacturer was 18.2 +/- 6.2 mm, correlating well with CT (18.5 +/- 5.7 mm; r = 0.95; P < 0.0001) and QCA (17.4 +/- 5.6 mm; r = 0.87; P < 0.0001). Proximal and distal reference vessel diameters were similar with CT and QCA (P = 0.06 and P = 0.03). B46f kernel images showed higher image noise (P < 0.05) and lower in-stent CT attenuation values (P < 0.001) than images reconstructed with the B30f kernel. 64-slice CT allows measurement of coronary artery in-stent density, and significantly underestimates the true in-stent diameter compared to QCA.
Resumo:
BACKGROUND: Coronary stents improve immediate and late results of balloon angioplasty by tacking up dissections and preventing wall recoil. These goals are achieved within weeks after angioplasty, but with current technology stents permanently remain in the artery, with many limitations including the need for long-term antiplatelet treatment to avoid thrombosis. We report a prospective multicentre clinical trial of coronary implantations of absorbable magnesium stents. METHODS: We enrolled 63 patients (44 men; mean age 61.3 [SD 9.5 years]) in eight centres with single de novo lesions in a native coronary artery in a multicentre, non-randomised prospective study. Follow-up included coronary angiography and intravascular ultrasound at 4 months and clinical assessment at 6 months and 12 months. The primary endpoint was cardiac death, non-fatal myocardial infarction, or clinically driven target lesion revascularisation at 4 months FINDINGS: 71 stents, 10-15 mm in length and 3.0-3.5 mm in diameter, were successfully implanted after pre-dilatation in 63 patients. Diameter stenosis was reduced from 61.5 (SD 13.1%) to 12.6 (5.6%) with an acute gain of 1.41 mm (0.46 mm) and in-stent late loss of 1.08 mm (0.49 mm). The ischaemia-driven target lesion revascularisation rate was 23.8% after 4 months, and the overall target lesion revascularisation rate was 45% after 1 year. No myocardial infarction, subacute or late thrombosis, or death occurred. Angiography at 4 months showed an increased diameter stenosis of 48.4 (17.0%). After serial intravascular ultrasound examinations, only small remnants of the original struts were visible, well embedded into the intima. Neointimal growth and negative remodelling were the main operating mechanisms of restenosis. INTERPRETATION: This study shows that biodegradable magnesium stents can achieve an immediate angiographic result similar to the result of other metal stents and can be safely degraded after 4 months. Modifications of stent characteristics with prolonged degradation and drug elution are currently in development.
Resumo:
Implantation of stents into the bronchial walls is a newly developed method to treat lung emphysema, which is now being tested clinically. During this procedure, a bronchoscope carrying a Doppler ultrasonography head is placed into a segmental bronchus and the blood vessels running in parallel to the bronchus are localized. Once a safe location without blood vessels is found, the bronchial wall is perforated and a stent is placed within the wall to improve the expiratory volume of these "bypasses" to the adjacent lung parenchyma. We observed a fatal complication with this method in a 60-year-old man. The bronchial wall and the pulmonary artery were perforated by one of the stents inducing massive bleeding, which could not be stopped. The patient died due to aspiration of blood in combination with massive loss of blood. The general risk to perforate the pulmonary artery during this procedure cannot be estimated from this single observation but should be considered regarding the legal and clinical aspects.
Resumo:
PURPOSE: To report the authors' initial experience with carotid artery stent-grafts in a comparatively large patient series for the treatment of acute bleeding and impending rupture or the prevention of distal embolization. MATERIALS AND METHODS: This retrospective study was approved by the institutional review boards and performed according to HIPPA standards. Twenty-five patients were treated with 27 carotid artery stent-grafts (Gore Viabahn, n = 10; Bard Fluency, n = 9; polytetrafluoroethylene-covered Palmaz, n = 5; and Wallgraft, n = 3). Thirteen stent-grafts were placed in patients with carotid blow-out syndrome (including three patients with carotid-airway fistula), 12 in patients with either pseudoaneurysm (n = 9) or true aneurysm (n = 3), and two in patients with intractable high-grade bare stent restenosis. RESULTS: The technical success rate was 100% (27 of 27 cases). No acute procedural transient ischemic attacks or strokes occurred. Procedural dissections occurred in two of the 27 cases (7.4%). Short-term complications occurred in three of the 27 cases (11%) (repeat hemorrhage, n = 2; common carotid artery occlusion, n = 1). The overall patient mortality rate was 36% (nine of 25 patients, all with carotid blow-out syndrome). Six-month follow-up in 15 of the 16 living patients demonstrated widely patent stent-grafts. Two patients with pseudoaneurysm also demonstrated patent stents at 18- and 33-month follow-up. CONCLUSIONS: Stent-grafts may be useful in the treatment of carotid artery bleeding syndrome, aneurysm, and stenosis, with a high procedural success rate in selected cases. The results of mid-term follow-up are encouraging, but results of long-term follow-up must be evaluated in future studies.
Resumo:
PURPOSE: To retrospectively evaluate the midterm patency rate of the nitinol (Viatorr, W.L. Gore and Associates, Flagstaff, Ariz) stent-graft for direct intrahepatic portacaval shunt (DIPS) creation. MATERIALS AND METHODS: Institutional Review Board approval for this retrospective HIPAA-compliant study was obtained with waiver of informed consent. DIPS was created in 18 men and one woman (median age, 54 years; range, 45-65 years) by using nitinol polytetrafluoroethylene (PTFE)-covered stent-grafts. The primary indications were intractable ascites (n = 14), acute variceal bleeding (n = 3), and hydrothorax (n = 2). Follow-up included Doppler ultrasonography at 1, 6, and 12 months and venography with manometry at 6-month intervals after the procedure. Shunt patency and cumulative survival were evaluated by using the Kaplan-Meier method and survival curves were plotted. Differences in mean portosystemic gradients (PSGs) were evaluated by using the Student t test. Multiple regression analysis for survival and DIPS patency were performed for the following parameters: Child-Pugh class, model of end-stage liver disease score, pre- and post-DIPS PSGs, pre-DIPS liver function tests, and pre-DIPS creatinine levels. RESULTS: DIPS creation was successful in all patients. Effective portal decompression and free antegrade shunt flow was achieved in all patients. Intraperitoneal bleeding occurred in one patient during the procedure and was controlled during the same procedure by placing a second nitinol stent-graft. The primary patency rate was 100% at all times during the follow-up period (range, 2 days to 30 months; mean, 256 days; median, 160 days). Flow restrictors were deployed in two (11%) of 19 patients. The 1-year mortality rate was 37% (seven of 19). CONCLUSION: Patency after DIPS creation with the nitinol PTFE-covered stent-graft was superior to that after TIPS with the nitinol stent-graft.
Resumo:
To analyze the immediate and midterm angiographic and clinical results of stent placement in the endovascular treatment of intracranial cerebral aneurysms.