205 resultados para computer-assisted lelarning
Resumo:
Pelvic osteotomies improve containment of the femoral head in cases of developmental dysplasia of the hip or in femoroacetabular impingement due to acetabular retroversion. In the evolution of osteotomies, the Ganz Periacetabular Osteotomy (PAO) is among the complex reorientation osteotomies and allows for complete mobilization of the acetabulum without compromising the integrity of the pelvic ring. For the complex reorientation osteotomies, preoperative planning of the required acetabular correction is an important step, due to the need to comprehend the three-dimensional (3D) relationship between acetabulum and femur. Traditionally, planning was performed using conventional radiographs in different projections, reducing the 3D problem to a two-dimensional one. Known disturbance variables, mainly tilt and rotation of the pelvis make assessment by these means approximate at the most. The advent of modern enhanced computation skills and new imaging techniques gave room for more sophisticated means of preoperative planning. Apart from analysis of acetabular geometry on conventional x-rays by sophisticated software applications, more accurate assessment of coverage and congruency and thus amount of correction necessary can be performed on multiplanar CT images. With further evolution of computer-assisted orthopaedic surgery, especially the ability to generate 3D models from the CT data, examiners were enabled to simulate the in vivo situation in a virtual in vitro setting. Based on this ability, different techniques have been described. They basically all employ virtual definition of an acetabular fragment. Subsequently reorientation can be simulated using either 3D calculation of standard parameters of femoroacetabular morphology, or joint contact pressures, or a combination of both. Other techniques employ patient specific implants, templates or cutting guides to achieve the goal of safe periacetabular osteotomies. This chapter will give an overview of the available techniques for planning of periacetabular osteotomy.
Resumo:
This chapter proposed a personalized X-ray reconstruction-based planning and post-operative treatment evaluation framework called iJoint for advancing modern Total Hip Arthroplasty (THA). Based on a mobile X-ray image calibration phantom and a unique 2D-3D reconstruction technique, iJoint can generate patient-specific models of hip joint by non-rigidly matching statistical shape models to the X-ray radiographs. Such a reconstruction enables a true 3D planning and treatment evaluation of hip arthroplasty from just 2D X-ray radiographs whose acquisition is part of the standard diagnostic and treatment loop. As part of the system, a 3D model-based planning environment provides surgeons with hip arthroplasty related parameters such as implant type, size, position, offset and leg length equalization. With this newly developed system, we are able to provide true 3D solutions for computer assisted planning of THA using only 2D X-ray radiographs, which is not only innovative but also cost-effective.
Resumo:
Patient-specific biomechanical models including local bone mineral density and anisotropy have gained importance for assessing musculoskeletal disorders. However the trabecular bone anisotropy captured by high-resolution imaging is only available at the peripheral skeleton in clinical practice. In this work, we propose a supervised learning approach to predict trabecular bone anisotropy that builds on a novel set of pose invariant feature descriptors. The statistical relationship between trabecular bone anisotropy and feature descriptors were learned from a database of pairs of high resolution QCT and clinical QCT reconstructions. On a set of leave-one-out experiments, we compared the accuracy of the proposed approach to previous ones, and report a mean prediction error of 6% for the tensor norm, 6% for the degree of anisotropy and 19◦ for the principal tensor direction. These findings show the potential of the proposed approach to predict trabecular bone anisotropy from clinically available QCT images.
Resumo:
BACKGROUND Residual acetabular dysplasia is seen in combination with femoral pathomorphologies including an aspherical femoral head and valgus neck-shaft angle with high antetorsion. It is unclear how these femoral pathomorphologies affect range of motion (ROM) and impingement zones after periacetabular osteotomy. QUESTIONS/PURPOSES (1) Does periacetabular osteotomy (PAO) restore the typically excessive ROM in dysplastic hips compared with normal hips; (2) how do impingement locations differ in dysplastic hips before and after PAO compared with normal hips; (3) does a concomitant cam-type morphology adversely affect internal rotation; and (4) does a concomitant varus-derotation intertrochanteric osteotomy (IO) affect external rotation? METHODS Between January 1999 and March 2002, we performed 200 PAOs for dysplasia; of those, 27 hips (14%) met prespecified study inclusion criteria, including availability of a pre- and postoperative CT scan that included the hip and the distal femur. In general, we obtained those scans to evaluate the pre- and postoperative acetabular and femoral morphology, the degree of acetabular reorientation, and healing of the osteotomies. Three-dimensional surface models based on CT scans of 27 hips before and after PAO and 19 normal hips were created. Normal hips were obtained from a population of CT-based computer-assisted THAs using the contralateral hip after exclusion of symptomatic hips or hips with abnormal radiographic anatomy. Using validated and computerized methods, we then determined ROM (flexion/extension, internal- [IR]/external rotation [ER], adduction/abduction) and two motion patterns including the anterior (IR in flexion) and posterior (ER in extension) impingement tests. The computed impingement locations were assigned to anatomical locations of the pelvis and the femur. ROM was calculated separately for hips with (n = 13) and without (n = 14) a cam-type morphology and PAOs with (n = 9) and without (n = 18) a concomitant IO. A post hoc power analysis based on the primary research question with an alpha of 0.05 and a beta error of 0.20 revealed a minimal detectable difference of 4.6° of flexion. RESULTS After PAO, flexion, IR, and adduction/abduction did not differ from the nondysplastic control hips with the numbers available (p ranging from 0.061 to 0.867). Extension was decreased (19° ± 15°; range, -18° to 30° versus 28° ± 3°; range, 19°-30°; p = 0.017) and ER in 0° flexion was increased (25° ± 18°; range, -10° to 41° versus 38° ± 7°; range, 17°-41°; p = 0.002). Dysplastic hips had a higher prevalence of extraarticular impingement at the anteroinferior iliac spine compared with normal hips (48% [13 of 27 hips] versus 5% [one of 19 hips], p = 0.002). A PAO increased the prevalence of impingement for the femoral head from 30% (eight of 27 hips) preoperatively to 59% (16 of 27 hips) postoperatively (p = 0.027). IR in flexion was decreased in hips with a cam-type deformity compared with those with a spherical femoral head (p values from 0.002 to 0.047 for 95°-120° of flexion). A concomitant IO led to a normalization of ER in extension (eg, 37° ± 7° [range, 21°-41°] of ER in 0° of flexion in hips with concomitant IO compared with 38° ± 7° [range, 17°-41°] in nondysplastic control hips; p = 0.777). CONCLUSIONS Using computer simulation of hip ROM, we could show that the PAO has the potential to restore the typically excessive ROM in dysplastic hips. However, a PAO can increase the prevalence of secondary intraarticular impingement of the aspherical femoral head and extraarticular impingement of the anteroinferior iliac spines in flexion and internal rotation. A cam-type morphology can result in anterior impingement with restriction of IR. Additionally, a valgus hip with high antetorsion can result in posterior impingement with decreased ER in extension, which can be normalized with a varus derotation IO of the femur. However, indication of an additional IO needs to be weighed against its inherent morbidity and possible complications. The results are based on a limited number of hips with a pre- and postoperative CT scan after PAO. Future prospective studies are needed to verify the current results based on computer simulation and to test their clinical importance.
Resumo:
Spinal image analysis and computer assisted intervention have emerged as new and independent research areas, due to the importance of treatment of spinal diseases, increasing availability of spinal imaging, and advances in analytics and navigation tools. Among others, multiple modality spinal image analysis and spinal navigation tools have emerged as two keys in this new area. We believe that further focused research in these two areas will lead to a much more efficient and accelerated research path, avoiding detours that exist in other applications, such as in brain and heart.
Resumo:
PURPOSE To evaluate a low-cost, inertial sensor-based surgical navigation solution for periacetabular osteotomy (PAO) surgery without the line-of-sight impediment. METHODS Two commercial inertial measurement units (IMU, Xsens Technologies, The Netherlands), are attached to a patient's pelvis and to the acetabular fragment, respectively. Registration of the patient with a pre-operatively acquired computer model is done by recording the orientation of the patient's anterior pelvic plane (APP) using one IMU. A custom-designed device is used to record the orientation of the APP in the reference coordinate system of the IMU. After registration, the two sensors are mounted to the patient's pelvis and acetabular fragment, respectively. Once the initial position is recorded, the orientation is measured and displayed on a computer screen. A patient-specific computer model generated from a pre-operatively acquired computed tomography scan is used to visualize the updated orientation of the acetabular fragment. RESULTS Experiments with plastic bones (eight hip joints) performed in an operating room comparing a previously developed optical navigation system with our inertial-based navigation system showed no statistically significant difference on the measurement of acetabular component reorientation. In all eight hip joints the mean absolute difference was below four degrees. CONCLUSION Using two commercially available inertial measurement units we show that it is possible to accurately measure the orientation (inclination and anteversion) of the acetabular fragment during PAO surgery and therefore to successfully eliminate the line-of-sight impediment that optical navigation systems have.
Resumo:
PURPOSE The objective of this study was to evaluate stiffness, strength, and failure modes of monolithic crowns produced using computer-aided design/computer-assisted manufacture, which are connected to diverse titanium and zirconia abutments on an implant system with tapered, internal connections. MATERIALS AND METHODS Twenty monolithic lithium disilicate (LS2) crowns were constructed and loaded on bone level-type implants in a universal testing machine under quasistatic conditions according to DIN ISO 14801. Comparative analysis included a 2 × 2 format: prefabricated titanium abutments using proprietary bonding bases (group A) vs nonproprietary bonding bases (group B), and customized zirconia abutments using proprietary Straumann CARES (group C) vs nonproprietary Astra Atlantis (group D) material. Stiffness and strength were assessed and calculated statistically with the Wilcoxon rank sum test. Cross-sections of each tested group were inspected microscopically. RESULTS Loaded LS2 crowns, implants, and abutment screws in all tested specimens (groups A, B, C, and D) did not show any visible fractures. For an analysis of titanium abutments (groups A and B), stiffness and strength showed equally high stability. In contrast, proprietary and nonproprietary customized zirconia abutments exhibited statistically significant differences with a mean strength of 366 N (Astra) and 541 N (CARES) (P < .05); as well as a mean stiffness of 884 N/mm (Astra) and 1,751 N/mm (CARES) (P < .05), respectively. Microscopic cross-sections revealed cracks in all zirconia abutments (groups C and D) below the implant shoulder. CONCLUSION Depending on the abutment design, prefabricated titanium abutment and proprietary customized zirconia implant-abutment connections in conjunction with monolithic LS2 crowns had the best results in this laboratory investigation.