221 resultados para bis
Resumo:
Magnitudes of peak discharges of 43 non-instrumentally measured Rhine river floods at Basel were reconstructed. The methodology is based on a range of different historic sources, containing flood information (including traditional urban inundation reference points from flood reports of medieval and early modern period chroniclers as well as 19th century journalists, flood marks, paintings and drawings, town maps, longitudinal and cross profiles etc.). These traditional pre-instrumental “flood information systems” still existed in the 19th century, when in 1808 the first instrumental hydrological measurements started. They thus could be calibrated with instrumental measurements in the 19th century overlapping period. The result is a 743 year long quantified Rhine river flood series. Floods of both periods (pre-instrumental as well as instrumental) can thus be directly compared for the very first time. The long-range consequences of rivers Kander and Aare deviations in 1714 and 1878 are reflected in a distinct change of magnitudes of peak discharges in Basel. A clear flood “disaster gap” appears in the 20th century. The lack of any extreme floods for such a long time is completely unique during the 743-year period of analysis. This result will influence the statistical assessment of once-in-a-century events, which might be of great interest for insurance campanies.
Resumo:
The isostructural title compounds, {(C7H7N2)2[SnI4]}n, (1), and {(C7H5F2N2)2[SnI4]}n, (2), show a layered perovskite-type structure composed of anionic {[SnI4]2-}n sheets parallel to (100), which are decorated on both sides with templating benzimidazolium or 5,6-difluorobenzimidazolium cations, respectively. These planar organic heterocycles mainly form N-H...I hydrogen bonds to the terminal I atoms of the corner-sharing [SnI6] octahedra (point group symmetry 2) from the inorganic layer, but not to the bridging ones. This is in contrast to most of the reported structures of related compounds where ammonium cations are involved. Here hydrogen bonding to both types of iodine atoms and thereby a distortion of the inorganic layers to various extents is observed. For (1) and (2), all Sn-I-Sn angles are linear and no out-of-plane distortions of the inorganic layers occur, a fact of relevance in view of the material properties. The arrangement of the aromatic cations is mainly determined through the direction of the N-H...I hydrogen bonds. The coherence between organic bilayers along [100] is mainly achieved through van der Waals interactions.