262 resultados para Sleep EEG
Resumo:
BACKGROUND/AIMS In a questionnaire survey, we identified 36 (9%) of 417 Parkinson's disease (PD) patients with sleepwalking (SW); 72% of them also had a history of REM sleep behaviour disorder (RBD). We aimed to assess the clinical and polysomnographic characteristics of SW in PD and to compare them to patients with PD with and without a history of RBD. METHODS We performed video-polysomnography and detailed clinical examination in 30 PD patients from the above-mentioned survey: 10 patients with a history of SW, 10 patients with a history of RBD, and 10 patients with no history of either SW or RBD. RESULTS PD patients with SW had higher depression, anxiety and Hoehn & Yahr scores and lower activities of daily living scores than patients without a history of RBD but did not differ from patients with RBD. Patients with SW and RBD also had more often dyskinesia and hallucinations. By polysomnography, RBD was observed in 8 patients with SW and in all patients with a history of RBD. A total of 5 patients without a history of either SW or RBD had REM sleep without atonia without behavioural peculiarities. CONCLUSION SW in PD is associated with depression, higher disease severity and functional disability. The simultaneous occurrence of SW and RBD (overlap parasomnia) in most patients suggests a common underlying disturbance of motor control during sleep in PD, with variable manifestations in different sleep stages.
Resumo:
Background: Disturbed sleep is a core feature of narcolepsy with cataplexy (NC). Few studies have independently assessed sleep-disordered breathing (SDB) and periodic limb movements (PLMs) in non-homogeneous series of patients with and without cataplexy. We systematically assessed both SDB and PLMs in well-defined NC patients. Methods: We analyzed the clinical and polysomnographic features of 35 consecutive NC patients (mean age 40 ± 16 years, 51% males, 23/23 hypocretin-deficient) to assess the prevalence of SDB (apnea-hypopnea index >5) and PLMs (periodic leg movements in sleep (PLMI) >15) together with their impact on nocturnal sleep and daytime sleepiness using the multiple sleep latency test. Results: 11 (31%) and 14 (40%) patients had SDB and PLMs, respectively. SDB was associated with older age (49 ± 16 vs. 35 ± 13 years, p = 0.02), higher BMI (30 ± 5 vs. 27 ± 6, p = 0.05), and a trend towards higher PLMI (25 ± 20 vs. 12 ± 23, p = 0.052), whereas PLMs with older age (50 ± 16 vs. 33 ± 11 years, p = 0.002) and reduced and fragmented sleep (e.g. sleep efficiency of 82 ± 12% vs. 91 ± 6%, p = 0.015; sleep time of 353 ± 66 vs. 395 ± 28, p = 0.010). SDB and PLMs were also mutually associated (p = 0.007), but not correlated to daytime sleepiness. Conclusions: SDB and PLMs are highly prevalent and associated in NC. Nevertheless, SDB and PLMs are rarely severe, suggesting an overall limited effect on clinical manifestations.
Resumo:
Syncope describes a sudden and brief transient loss of consciousness (TLOC) with postural failure due to cerebral global hypoperfusion. The term TLOC is used when the cause is either unrelated to cerebral hypoperfusion or is unknown. The most common causes of syncopal TLOC include: (1) cardiogenic syncope (cardiac arrhythmias, structural cardiac diseases, others); (2) orthostatic hypotension (due to drugs, hypovolemia, primary or secondary autonomic failure, others); (3) neurally mediated syncope (cardioinhibitory, vasodepressor, and mixed forms). Rarely neurologic disorders (such as epilepsy, transient ischemic attacks, and the subclavian steal syndrome) can lead to cerebal hypoperfusion and syncope. Nonsyncopal TLOC may be due to neurologic (epilepsy, sleep attacks, and other states with fluctuating vigilance), medical (hypoglycemia, drugs), psychiatric, or post-traumatic disorders. Basic diagnostic workup of TLOC includes a thorough history and physical examination, and a 12-lead electrocardiogram (ECG). Blood testing, electroencephalogram (EEG), magnetic resonance imaging (MRI) of the brain, echocardiography, head-up tilt test, carotid sinus massage, Holter monitoring, and loop recorders should be obtained only in specific contexts. Management strategies involve pharmacologic and nonpharmacologic interventions, and cardiac pacing.
Resumo:
STUDY OBJECTIVES: To describe the time structure of leg movements (LM) in obstructive sleep apnea (OSA) syndrome, in order to advance understanding of their clinical significance. LOCATION: Sleep Research Centre, Oasi Institute (IRCCS), Troina, Italy. SETTING: Sleep laboratory. PATIENTS: Eighty-four patients (16 females, 68 males, mean age 55.1 y, range 29-74 y). METHODS: Respiratory-related leg movements (RRLM) and those unrelated to respiratory events (NRLM) were examined within diagnostic polysomnograms alone and together for their distributions within the sleep period and for their periodicity. MEASUREMENTS AND RESULTS: Patients with OSA and RRLM exhibited more periodic leg movements in sleep (PLMS), particularly in NREM sleep. A gradual decrease in number of NRLM across the sleep period was observed in patients with RRLM. This pattern was less clear for RRLM. Frequency histograms of intermovement intervals of all LMs in patients with RRLM showed a prominent first peak at 4 sec, and a second peak at approximately 24 sec coincident with that of PLMS occurring in the absence of OSA. A third peak of lowest amplitude was the broadest with a maximum at approximately 42 sec. In patients lacking RRLM, NRLM were evident with a single peak at 2-4 sec. A stepwise linear regression analysis showed that, after controlling for a diagnosis of restless legs syndrome and apnea-hypopnea index, PLMS remained significantly associated with RRLM. CONCLUSION: The time structure of leg movements occurring in conjunction with respiratory events exhibit features of periodic leg movements in sleep occurring alone, only with a different and longer period. This brings into question the validity, both biologic and clinical, of scoring conventions with their a priori exclusion from consideration as periodic leg movements in sleep.
Resumo:
Lucid dreams – dreams in which the dreamer is aware that is dreaming – most frequently occur during REM sleep, yet there is some evidence suggesting that lucid dreaming can occur during NREM sleep as well. By conducting a sleep laboratory study on lucid dreams, we found two possible instances of lucidity during NREM sleep which are reported here. While lucid dreaming during NREM sleep seems to be much rarer and more difficult to achieve, it appears to be possible and is most likely to occur during N1 sleep, somewhat less likely during N2 sleep and yet to be observed during N3 sleep. Future studies should explore induction methods, underlying neural mechanisms and perceptual/dream content differences between REM and NREM lucid dreams. Furthermore, a consensus agreement is needed to define what is meant by lucid dreaming and create a vocabulary that is helpful in clarifying variable psychophysiological states that can support self-reflective awareness.
Resumo:
Purpose The purpose of this study was to evaluate whether and to what extent the observed effects on self-rated sleep in a previous study using a combined treatment program with physical exercise and sleep education can be attributed by the physical activity (PA) component. Methods The present study reports supplementary analysis of an already described and published study. Data were provided by a nonclinical sample of 98 normal-active adults with chronic initiating and the maintaining of sleep complaints. The additional analysis included sleep log, exercise log, and daily pedometer data which were collected during a baseline week and 6-week of a combined intervention. Results The results indicate that the number of steps (p = 0.02) and the duration of PA (p = 0.01) is significantly related to the improvement in subjective sleep measures and therefore reveal an independent effect within this combined sleep program. Sleep diary data (recuperation of sleep, number of awakenings after sleep onset, and wake time after sleep onset time) improved significant (all p < 0.01) over the intervention program. About 50% of the participants stated that the PA had an effect on their improvement. Conclusion Improvements on subjective sleep quality after a combined intervention cannot be attributed to the cognitive component alone, but PA has an independent effect. Adults with chronic sleep complaints benefit from exercise. Therefore structured PA should be implemented in any sleep management programs.