200 resultados para MOUNTAIN ECOSYSTEMS
Resumo:
Regime shifts, defined as a radical and persistent reconfiguration of an ecosystem following a disturbance, have been acknowledged by scientists as a very important aspect of the dynamic of ecosystems. However, their consideration in land management planning remains marginal and limited to specific processes and systems. Current research focuses on mathematical modeling and statistical analysis of spatio-temporal data for specific environmental variables. These methods do not fulfill the needs of land managers, who are confronted with a multitude of processes and pressure types and require clear and simple strategies to prevent regime shift or to increase the resilience of their environment. The EU-FP7 CASCADE project is looking at regime shifts of dryland ecosystems in southern Europe and specifically focuses on rangeland and forest systems which are prone to various land degradation threats. One of the aims of the project is to evaluate the impact of different management practices on the dynamic of the environment in a participatory manner, including a multi-stakeholder evaluation of the state of the environment and of the management potential. To achieve this objective we have organized several stakeholder meetings and we have compiled a review of management practices using the WOCAT methodology, which enables merging scientific and land users knowledge. We highlight here the main challenges we have encountered in applying the notion of regime shift to real world socio-ecological systems and in translating related concepts such as tipping points, stable states, hysteresis and resilience to land managers, using concrete examples from CASCADE study sites. Secondly, we explore the advantages of including land users’ knowledge in the scientific understanding of regime shifts. Moreover, we discuss useful alternative concepts and lessons learnt that will allow us to build a participatory method for the assessment of resilient management practices in specific socio-ecological systems and to foster adaptive dryland management.
Resumo:
In the present-day Ethiopia, glaciated landscapes do not exist, but paleoglaciated landscapes have been documented on a few mountain tops, which have altitudes higher than about 4,350 m asl in northern Ethiopia (Simen Mountains) and about 4,100 m asl in southern Ethiopia (Arsi and Bale Mountains). Glaciers were associated with the Late Pleistocene cold stages and reached as far down as 3,760 m asl in northern and 3,200 m asl in southern Ethiopia. Bale Mountains had the most extensive Late Pleistocene glaciation, covering over 190 km2, followed by Arsi Mountains (about 85 km2). In Simen, the Late Pleistocene glaciers covered merely 13 km2. In addition, paleo-periglacial slope deposits are found on all above-mentioned paleoglaciated mountains and in further mountain systems which did not host glaciers. This allows the reconstruction of the Late Pleistocene paleoclimate as being about 8 °C colder than at present (2014), much more dry, and probably without monsoon, at least in northern Ethiopia. Most probably in the Early Holocene, the re-emergence of monsoonal rains led to a strong erosion phase, which was followed by an extended stable phase with soil formation, building up about 70-cm-deep A-horizons (Andosol) on the paleo-periglacial slope deposits. These soils have been heavily degraded due to human-induced soil erosion up to about 3800 m asl since agriculture started several decades to millennia ago.
Resumo:
Background Chronic mountain sickness (CMS) is often associated with vascular dysfunction, but the underlying mechanism is unknown. Sleep disordered breathing (SDB) frequently occurs at high altitude. At low altitude SDB causes vascular dysfunction. Moreover, in SDB, transient elevations of right-sided cardiac pressure may cause right-to-left shunting in the presence of a patent foramen ovale (PFO) and, in turn, further aggravate hypoxemia and pulmonary hypertension. We speculated that compared to healthy high-altitude dwellers, in patients with CMS, SDB and nocturnal hypoxemia are more pronounced and related to vascular dysfunction. Methods We performed overnight sleep recordings, and measured systemic and pulmonary-artery pressure in 23 patients with CMS (mean±SD age 52.8±9.8 y) and 12 healthy controls (47.8±7.8 y) at 3600 m. In a subgroup of 15 subjects with SDB, we searched for PFO with transesophagal echocardiography. Results The major new findings were that in CMS patients, a) SDB and nocturnal hypoxemia was more severe (P<0.01) than in controls (apnea/hypopnea index, AHI, 38.9±25.5 vs. 14.3±7.8[nb/h]; SaO2, 80.2±3.6 vs. 86.8±1.7[%], CMS vs. controls), and b) AHI was directly correlated with systemic blood pressure (r=0.5216, P=0.001) and pulmonary-artery pressure (r=0.4497, P=0.024). PFO was associated with more severe SDB (AHI 48.8±24.7 vs. 14.8±7.3[nb/h], P=0.013, PFO vs. no PFO) and hypoxemia. Conclusion SDB and nocturnal hypoxemia are more severe in CMS patients than in controls and are associated with systemic and pulmonary vascular dysfunction. The presence of a PFO appeared to further aggravate SDB. Closure of PFO may improve SDB, hypoxemia and vascular dysfunction in CMS patients. Clinical Trials Gov Registration NCT01182792.
Resumo:
A deeper understanding of past vegetation dynamics is required to better assess future vegetation responses to global warming in the Alps. Lake sediments from Lac de Bretaye, a small subalpine lake in the Northern Swiss Alps (1780 m a.s.l.), were analysed to reconstruct past vegetation dynamics for the entire Holocene, using pollen, macrofossil and charcoal analyses as main proxies. The results show that timberline reached the lake’s catchment area at around 10,300 cal. BP, supporting the hypothesis of a delayed postglacial afforestation in the Northern Alps. At the same time, thermophilous trees such as Ulmus, Tilia and Acer established in the lowlands and expanded to the altitude of the lake, forming distinctive boreo-nemoral forests with Betula, Pinus cembra and Larix decidua. From about 5000 to 3500 cal. BP, thermophilous trees declined because of increasing human land use, mainly driven by the mass expansion of Picea abies and severe anthropogenic fire activity. From the Bronze Age onwards (c. 4200–2800 cal. BP), grazing indicators and high values for charcoal concentration and influx attest an intensifying human impact, fostering the expansion of Alnus viridis and Picea abies. Hence, biodiversity in alpine meadows increased, whereas forest diversity declined, as can be seen in other regional records. We argue that the anticipated climate change and decreasing human impact in the Alps today will not only lead to an upward movement of timberline with consequent loss of area for grasslands, but also to a disruption of Picea abies forests, which may allow the re-expansion of thermophilous tree species.
Resumo:
Soil indicators may be used for assessing both land suitability for restoration and the effectiveness of restoration strategies in restoring ecosystem functioning and services. In this review paper, several soil indicators, which can be used to assess the effectiveness of ecological restoration strategies in dryland ecosystems at different spatial and temporal scales, are discussed. The selected indicators represent the different viewpoints of pedology, ecology, hydrology, and land management. Two overall outcomes stem from the review. (i) The success of restoration projects relies on a proper understanding of their ecology, namely the relationships between soil, plants, hydrology, climate, and land management at different scales, which are particularly complex due to the heterogeneous pattern of ecosystems functioning in drylands. (ii) The selection of the most suitable soil indicators follows a clear identification of the different and sometimes competing ecosystem services that the project is aimed at restoring.
Resumo:
This paper examines how local communities adapt to climate change and how governance structures can foster or undermine adaptive capacity. Climate change policies, in general, and disaster risk management in mountain regions, in particular, are characterised by their multi-level and multi-sectoral nature during formulation and implementation. The involvement of numerous state and non-state actors at local to national levels produces a variety of networks of interaction and communication. The paper argues that the structure of these relational patterns is critical for understanding adaptive capacity. It thus proposes an expanded concept of adaptive capacity that incorporates (horizontal and vertical) actor integration and communication flow between these actors. The paper further advocates the use of formal social network analysis to assess these relational patterns. Preliminary results from research on adaptation to climate change in a Swiss mountain region vulnerable to floods and other natural hazards illustrate the conceptual and empirical significance of the main arguments.