306 resultados para Fusarium graminearum Schwabe
Resumo:
Acromegaly is usually due to autonomous, excessive secretion of growth hormone from a pituitary adenoma. One would expect growth hormone-releasing factor (GHRH) in these patients to be suppressed. In the available literature referring to acromegaly, immunoreactive GHRH levels were determined in 259 acromegalic patients. When growth hormone was measured simultaneously, no correlation was found between serum growth hormone and plasma GHRH concentrations, irrespective of whether the acromegalic patients were treated or not. A possible explanation for this finding might be the lack of a feedback regulation between plasma growth hormone and GHRH. Also, since growth hormone is secreted in a pulsatile fashion the interpretation of single growth hormone values can be difficult. IGF I, which correlates well with mean growth hormone production, may therefore represent a more valuable criterion for the assessment of activity and GHRH plasma levels in acromegalics. However, no study has yet been performed to elucidate the relationship between GHRH and IGF I in acromegaly. To examine this relationship we measured the concentration of plasma GHRH and IGF I in 18 treated patients with acromegaly (age range 32-64 years median 50.5 years; median follow-up 6.5 years, range 3 months to 33 years). All immunoreactive GHRH levels were within the limits described as normal in the literature (mean +/- SD 22.89 +/- 2.72 pg/ml, range 19-28 pg/ml). The IGFI level was 396.78 +/- 224.26 ng/ml (mean +/- SD, range 71-876 ng/ml; reference ranges, age group 25-39 years: 114-492 ng/ml; 40-54 years: 90-360 ng/ml; > 55 years: 71-290 ng/ml). We found no correlation between IGF I and GHRH concentrations (r = 0.17). We therefore conclude that measuring plasma GHRH is not useful in the evaluation of the activity or therapy of acromegaly but may be helpful in its differential diagnosis since a massive elevation of GHRH is typically associated with the ectopic GHRH syndrome, a rare cause of acromegaly.
Resumo:
PURPOSE: The goal of this study was to identify mutations in X-chromosomal genes associated with retinitis pigmentosa (RP) in patients from Germany, The Netherlands, Denmark, and Switzerland. METHODS: In addition to all coding exons of RP2, exons 1 through 15, 9a, ORF15, 15a and 15b of RPGR were screened for mutations. PCR products were amplified from genomic DNA extracted from blood samples and analyzed by direct sequencing. In one family with apparently dominant inheritance of RP, linkage analysis identified an interval on the X chromosome containing RPGR, and mutation screening revealed a pathogenic variant in this gene. Patients of this family were examined clinically and by X-inactivation studies. RESULTS: This study included 141 RP families with possible X-chromosomal inheritance. In total, we identified 46 families with pathogenic sequence alterations in RPGR and RP2, of which 17 mutations have not been described previously. Two of the novel mutations represent the most 3'-terminal pathogenic sequence variants in RPGR and RP2 reported to date. In exon ORF15 of RPGR, we found eight novel and 14 known mutations. All lead to a disruption of open reading frame. Of the families with suggested X-chromosomal inheritance, 35% showed mutations in ORF15. In addition, we found five novel mutations in other exons of RPGR and four in RP2. Deletions in ORF15 of RPGR were identified in three families in which female carriers showed variable manifestation of the phenotype. Furthermore, an ORF15 mutation was found in an RP patient who additionally carries a 6.4 kbp deletion downstream of the coding region of exon ORF15. We did not identify mutations in 39 sporadic male cases from Switzerland. CONCLUSIONS: RPGR mutations were confirmed to be the most frequent cause of RP in families with an X-chromosomal inheritance pattern. We propose a screening strategy to provide molecular diagnostics in these families.