196 resultados para Flower-bud differentiation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lake sediments from arcto-boreal regions commonly contain abundant Betula pollen. However, palaeoenvironmental interpretations of Betula pollen are often ambiguous because of the lack of reliable morphological features to distinguish among ecologically distinct Betula species in western North America. We measured the grain diameters and pore depths of pollen from three tree-birch species (B. papyrifera, B. kenaica and B. neoalaskana) and two shrub-birch species (B. glandulosa and B. nana), and calculated the ratio of grain diameter to pore depth (D/P ratio). No statistical difference exists in all three parameters between the shrub-birch species or between two of the tree-birch species (B. kenaica and B. papyrifera), and B. neoalaskana is intermediate between the shrub-birch and the other two tree-birch species. However, mean pore depth is significantly larger for the tree species than for the shrub species. In contrast, mean grain diameter cannot distinguish tree and shrub species. Mean D/P ratio separates tree and shrub species less clearly than pore depth, but this ratio can be used for verification. The threshold for distinguishing pollen of tree versus shrub birch lies at 2.55 μm and 8.30 for pore depth and D/P ratio, respectively. We'applied these thresholds to the analysis of Betula pollen in an Alaskan lake-sediment core spanning the past 800 years. Results show that shrub birch increased markedly at the expense of tree birch during the‘Little Ice Age’; this patten is not discernible in the profile of total birch pollen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The differentiation of ADSC is regulated by many factors, including oxygen tensions. Evidences have suggested that low oxygen tension or hypoxia is involved in the osteogenic, adipogenic differentiations of MSCs. Expansion and induction of ADSCs under hypoxia generally result in enhanced osteogenic, differentiation. Therefore, we analyzed bovine ADSC differentiations in Normoxia and hypoxia conditions Methodology: Recently (<8h) cow tail from a slaughterhouse, take out some fat from the tail and fat cells was isolated by using for isolation of ADSC protocol, the expansion cells were put into osteogenic and adipogenic medium for 3 weeks in hypoxia and normoxia conditions separately and characterized by Von kossa, Alizarin red and Oil red O staining and further by using real-time PCR by using primers of osteocalcin, Collagen type1, cbfa1/runx2, ALP, ostepontin, osteonectin, BMP2, BMP24, BMP27, noggin, gremlin, Nestin and HIF1A,VEGFA,PPARG,Leptin. Results: Our experiment results show hypoxia promotes osteogenesis but suppresses adipogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Clinical observations indicate that the presence of nucleus pulposus (NP) tissue during spinal fusion hinders the rate of disc ossification. While the underlying mechanism remains unknown, this observation could be due to incomplete removal of NP cells (NPCs) that secrete factors preventing disc calcification, such as bone morphogenetic protein (BMP) antagonists including noggin and members of the DAN (differential screening selected gene aberrative in neuroblastoma) family. METHODS Monolayer human bone marrow-derived mesenchymal stem cells (MSCs) were cocultured withNPCs and annulus fibrosus cells (AFCs) embedded in alginate for 21 days. At the end of coculture, MSCs were stained for mineral deposition by alizarin red, and relative expression of bone-related genes [Runt-related transcription factor 2, (RUNX2), Osteopontin (OPN), and Alkaline phosphatase (ALP)] and ALP activity were analyzed. Relative expression of three BMP antagonists, chordin (CHRD), gremlin (GREM1), and noggin (NOG), was determined in primary human NPCs and AFCs. These cells were also stained for Gremlin and Noggin by immunocytochemistry. RESULTS Alizarin red staining showed that MSC osteogenesis in monolayer cultures was inhibited by coculture with NPCs or AFCs. ALP activity and RT-PCR analyses confirmed these results and demonstrated inhibition of osteogenesis of MSC in the presence of disc cells. NOG was significantly up-regulated in MSCs after coculture. Relative gene expression of intervertebral disc (IVD) cells showed higher expression of GREM1 in NPCs than in AFCs. CONCLUSIONS We show that primary IVD cells inhibit osteogenesis of MSCs. BMP inhibitors NOG, GREM1 and CHRD were expressed in IVD cells. GREM1 appears to be differentially expressed in NPCs and AFCs. Our results have implications for the design and development of treatments for non-union in spinal fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Question: Low back pain is an increasing global health problem, which is associated with intervertebral disc (IVD) damage and de- generation. Major changes occur in the nucleus pulposus (NP), with the degradation of the extracellular matrix (ECM) [1]. Further studies showed that growth factors from the transforming growth factor (TGF) and bone morphogenic proteins (BMP) family may induce chondrogenic differentiation of mesenchymal stem cells (MSC) [2]. Focusing on non-viral gene therapies and their possible translation into the clinics, we investigated if GDF6 (syn. BMP13 or CDMP2) can induce regeneration of degraded NP. We hypothesized that IVD transfected with plasmid over-expressing GDF6 also up-regulates other NP- and chondrogenic cell markers and enhances ECM deposition. Methods: Bovine IVD cells were isolated by pronase/collagenase II overnight digestion. After monolayer expansion up to passage 3, cells were transfected with the plasmid pGDF6 (RG211366, Origene, SF) or with green fluorescence protein (GFP) control using the NeonÒ transfection system (Invitrogen, Basel), both equipped with a Cy- tomegalovirus (CMV) promotor to induce over-expression. We tested a range of yet unpublished parameters for each of the primary disc cells to optimize efficiency. To test a non-viral gene therapy applied directly to 3D whole organ culture, bovine IVDs were harvested from fresh tails obtained from the abattoir within 5 h post-mortem [3]. Discs were then pre-incubated for 24 h in high glucose Dulbecco’s Modified Eagle Medium and 5 % fetal calf serum. Each disc was transfected by injection of 5 lg of plasmid GDF6 (Origene, RG211366) into the center by 25G needle and using Hamilton sy- ringe. Electroporation was performed using 2-needle array electrode or tweezertrodes; 8 pulses at 200mv/cm with an interval of 10 ms were applied using ECM830 Square Wave Electroporation System (Harvard Apparatus, MA) (Fig. 1). After transfection discs were cultured for 72 h to allow expression of GFP or GDF6. Discs were then fixed, cryosectioned and analysed by immunofluorescence against GDF6. Results: We successfully transfected bovine NP and AF cells in monolayer culture with the two plasmids using a 1,400 V, 20 ms and 2 pulses with a *25 % efficiency using 0.15 M cells and 3 lg DNA (Fig. 1). Organ IVD culture transfection revealed GFP6 positive staining in the centre of the disc using 2-needle array electrode. Results from tweezertrodes did not show any GFP posi- tive cells. Conclusions: We identified novel parameters to successfully transfect primary bovine IVD cells. For transfection of whole IVD explants electroporation parameters need to be further optimized. Acknowledgments: This study was supported by the Lindenhof Foundation ‘‘Forschung und Lehre’’ (Project no. 13-02-F). References 1. Roughly PJ (2004) Spine (Phila) 29:2691–2699 2. 3. Clarke LE, McConell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA (2014) Arthritis Res Ther 16:R67 Chan SC, Gantenbein-Ritter B (2012) J Vis Exp 60(60):e3490

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Granulocytes are central players of the immune system and, once activated, a tightly controlled balance between effector functions and cell removal by apoptosis guarantees maximal host benefit with least possible collateral damage to healthy tissue. Granulocytes are end-differentiated cells that cannot be maintained in culture for prolonged times. Isolating primary granulocytes is inefficient and challenging when working with mice, and especially so for the lowly abundant eosinophil and basophils subtypes. Here we describe an in vitro protocol to massively expand mouse derived myeloid progenitors and to differentiate them ‘on demand’ and in large numbers into mature neutrophils or basophils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Enamel matrix derivatives (EMDs) have been used clinically for more than a decade for the regeneration of periodontal tissues. The aim of the present study is to analyze the effect on cell growth of EMDs in a gel carrier in comparison to EMDs in a liquid carrier. EMDs in a liquid carrier have been shown to adsorb better to bone graft materials. METHODS Primary human osteoblasts and periodontal ligament (PDL) cells were exposed to EMDs in both gel and liquid carriers and compared for their ability to induce cell proliferation and differentiation. Alizarin red staining and real-time polymerase chain reaction for expression of genes encoding collagen 1, osteocalcin, and runt-related transcription factor 2, as well as bone morphogenetic protein 2 (BMP2), transforming growth factor (TGF)-β1, and interleukin (IL)-1β, were assessed. RESULTS EMDs in both carriers significantly increased cell proliferation of both osteoblasts and PDL cells in a similar manner. Both formulations also significantly upregulated the expression of genes encoding BMP2 and TGF-β1 as well as decreased the expression of IL-1β. EMDs in the liquid carrier further retained similar differentiation potential of both osteoblasts and PDL cells by demonstrating increased collagen and osteocalcin gene expression and significantly higher alizarin red staining. CONCLUSIONS The results from the present study indicate that the new formulation of EMDs in a liquid carrier is equally as potent as EMDs in a gel carrier in inducing osteoblast and PDL activity. Future study combining EMDs in a liquid carrier with bone grafting materials is required to further evaluate its potential for combination therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species – the great tit Parus major – at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close-by sites (< 50 km), using 22 microsatellite markers. Overall we found a low but significant genetic differentiation among sites (FST = 0.008). Genetic differentiation was higher, and genetic diversity lower, in south-western Europe. These regional differences were statistically best explained by winter temperature. Overall, our results suggest that great tits form a single patchy metapopulation across Europe, in which genetic differentiation is independent of geographical distance and gene flow may be regulated by environmental factors via movements related to winter severity. This might have important implications for the evolutionary trajectories of sub-populations, especially in the context of climate change, and calls for future investigations of local differences in costs and benefits of philopatry at large scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To differentiate diabetic macular edema (DME) from pseudophakic cystoid macular edema (PCME) based solely on spectral-domain optical coherence tomography (SD-OCT). METHODS: This cross-sectional study included 134 participants: 49 with PCME, 60 with DME, and 25 with diabetic retinopathy (DR) and ME after cataract surgery. First, two unmasked experts classified the 25 DR patients after cataract surgery as either DME, PCME, or mixed-pattern based on SD-OCT and color-fundus photography. Then all 134 patients were divided into two datasets and graded by two masked readers according to a standardized reading-protocol. Accuracy of the masked readers to differentiate the diseases based on SD-OCT parameters was tested. Parallel to the masked readers, a computer-based algorithm was established using support vector machine (SVM) classifiers to automatically differentiate disease entities. RESULTS: The masked readers assigned 92.5% SD-OCT images to the correct clinical diagnose. The classifier-accuracy trained and tested on dataset 1 was 95.8%. The classifier-accuracy trained on dataset 1 and tested on dataset 2 to differentiate PCME from DME was 90.2%. The classifier-accuracy trained and tested on dataset 2 to differentiate all three diseases was 85.5%. In particular, higher central-retinal thickness/retinal-volume ratio, absence of an epiretinal-membrane, and solely inner nuclear layer (INL)-cysts indicated PCME, whereas higher outer nuclear layer (ONL)/INL ratio, the absence of subretinal fluid, presence of hard exudates, microaneurysms, and ganglion cell layer and/or retinal nerve fiber layer cysts strongly favored DME in this model. CONCLUSIONS: Based on the evaluation of SD-OCT, PCME can be differentiated from DME by masked reader evaluation, and by automated analysis, even in DR patients with ME after cataract surgery. The automated classifier may help to independently differentiate these two disease entities and is made publicly available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RNA binding proteins RBM binding motif protein 38 (RBM38) and DEAD END 1 (DND1) selectively stabilize mRNAs by attenuating RNAse activity or protecting them from micro(mi)RNA-mediated cleavage. Furthermore, both proteins can efficiently stabilize the mRNA of the cell cycle inhibitor p21(CIP1). Since acute myeloid leukemia (AML) differentiation requires cell cycle arrest and RBM38 as well as DND1 have antiproliferative functions, we hypothesized that decreased RBM38 and DND1 expression may contribute to the differentiation block seen in this disease. We first quantified RBM38 and DND1 mRNA expression in clinical AML patient samples and CD34(+) progenitor cells and mature granulocytes from healthy donors. We found significantly lower RBM38 and DND1 mRNA levels in AML blasts and CD34(+) progenitor cells as compared to mature neutrophils from healthy donors. Furthermore, the lowest expression of both RBM38 and DND1 mRNA correlated with t(8;21). In addition, neutrophil differentiation of CD34(+) cells in vitro with G-CSF (granulocyte colony stimulating factor) resulted in a significant increase of RBM38 and DND1 mRNA levels. Similarly, neutrophil differentiation of NB4 acute promyelocytic leukemia (APL) cells was associated with a significant induction of RBM38 and DND1 expression. To address the function of RBM38 and DND1 in neutrophil differentiation, we generated two independent NB4RBM38 as well as DND1 knockdown cell lines. Inhibition of both RBM38 and DND1 mRNA significantly attenuated NB4 differentiation and resulted in decreased p21(CIP1) mRNA expression. Our results clearly indicate that expression of the RNA binding proteins RBM38 and DND1 is repressed in primary AML patients, that neutrophil differentiation is dependent on increased expression of both proteins, and that these proteins have a critical role in regulating p21(CIP1) expression during APL differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoclasts originate from the hematopoietic stem cell and share a differentiation pathway with the cells of the monocyte/macrophage lineages. Development and activation of osteoclasts, and as a consequence regulation of bone resorption, depend on two growth factors: macrophage colony-stimulating factor and receptor activator of NF-κB ligand. Furthermore, cell development and activity are modulated by a microenvironment composed of cytokines and growth factors and of the extracellular matrix. Membrane transporters are a means for cells to interact with their environment. Within this study, the expression of proteins regulating cellular iron homeostasis in osteoclast-like cells grown from bone marrow-derived progenitors was compared to the expression of this set of proteins by monocyte/macrophage lineage cells. In differentiating osteoclasts, levels of transcripts encoding transferrin receptor 1 and divalent metal transporter 1 (Slc11A2) were increased, while levels of transcripts encoding ferroportin (Slc40A1) and natural resistance-associated macrophage protein 1 (Slc11A1) were decreased. Supplementation of the culture media with exogenous iron led to an increase in the proliferation of osteoclast progenitor cells and to the expression of a macrophage-like phenotype, while the development of osteoclasts was reduced. Upon transfer of mature OC onto a CaP substrate, iron depletion of the medium with the Fe(3+)-chelator Deferoxamine Mesylate decreased CaP dissolution by ~30 %, which could be restored by addition of exogenous iron. During the 24 h of the assay, no effects were observed on total TRAP activity. The data demonstrate transcriptional regulation of the components of cellular iron transporters during OC development and suggests that iron homeostasis may contribute to fine-tuning of the RANKL-induced OC development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION blaOXA-48, blaNDM-1 and blaCTX-M-3 are clinically relevant resistance genes, frequently associated with the broad-host range plasmids of the IncL/M group. The L and M plasmids belong to two compatible groups, which were incorrectly classified together by molecular methods. In order to understand their evolution, we fully sequenced four IncL/M plasmids, including the reference plasmids R471 and R69, the recently described blaOXA-48-carrying plasmid pKPN-El.Nr7 from a Klebsiella pneumoniae isolated in Bern (Switzerland), and the blaSHV-5 carrying plasmid p202c from a Salmonella enterica from Tirana (Albania). METHODS Sequencing was performed using 454 Junior Genome Sequencer (Roche). Annotation was performed using Sequin and Artemis software. Plasmid sequences were compared with 13 fully sequenced plasmids belonging to the IncL/M group available in GenBank. RESULTS Comparative analysis of plasmid genomes revealed two distinct genetic lineages, each containing one of the R471 (IncL) and R69 (IncM) reference plasmids. Conjugation experiments demonstrated that plasmids representative of the IncL and IncM groups were compatible with each other. The IncL group is constituted by the blaOXA-48-carrying plasmids and R471. The IncM group contains two sub-types of plasmids named IncM1 and IncM2 that are each incompatible. CONCLUSION This work re-defines the structure of the IncL and IncM families and ascribes a definitive designation to the fully sequenced IncL/M plasmids available in GenBank.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Species diversity and genetic diversity may be affected in parallel by similar environmental drivers. However, genetic diversity may also be affected independently by habitat characteristics. We aim at disentangling relationships between genetic diversity, species diversity and habitat characteristics of woody species in subtropical forest. Methods: We studied 11 dominant tree and shrub species in 27 plots in Gutianshan, China, and assessed their genetic diversity (Ar) and population differentiation (F’ST) with microsatellite markers. We tested if Ar and population specific F’ST were correlated to local species diversity and plot characteristics. Multi-model inference and model averaging were used to determine the relative importance of each predictor. Additionally we tested for isolation-by-distance and isolation-by-elevation by regressing pairwise F’ST against pairwise spatial and elevational distances. Important findings: Genetic diversity was not related to species diversity for any of the study species. Thus, our results do not support joint effects of habitat characteristics on these two levels of biodiversity. Instead, genetic diversity in two understory shrubs, Rhododendron simsii and Vaccinium carlesii, was affected by plot age with decreasing genetic diversity in successionally older plots. Population differentiation increased with plot age in Rhododendron simsii and Lithocarpus glaber. This shows that succession can reduce genetic diversity within, and increase genetic diversity between populations. Furthermore, we found four cases of isolation-by-distance and two cases of isolation-by-elevation. The former indicates inefficient pollen and seed dispersal by animals whereas the latter might be due to phenological asynchronies. These patterns indicate that succession can affect genetic diversity without parallel effects on species diversity and that gene flow in a continuous subtropical forest can be restricted even at a local scale.