179 resultados para urethral sphincter deficiency
Resumo:
The paracaspase MALT1 plays an important role in immune receptor-driven signaling pathways leading to NF-κB activation. MALT1 promotes signaling by acting as a scaffold, recruiting downstream signaling proteins, as well as by proteolytic cleavage of multiple substrates. However, the relative contributions of these two different activities to T and B cell function are not well understood. To investigate how MALT1 proteolytic activity contributes to overall immune cell regulation, we generated MALT1 protease-deficient mice (Malt1(PD/PD)) and compared their phenotype with that of MALT1 knockout animals (Malt1(-/-)). Malt1(PD/PD) mice displayed defects in multiple cell types including marginal zone B cells, B1 B cells, IL-10-producing B cells, regulatory T cells, and mature T and B cells. In general, immune defects were more pronounced in Malt1(-/-) animals. Both mouse lines showed abrogated B cell responses upon immunization with T-dependent and T-independent Ags. In vitro, inactivation of MALT1 protease activity caused reduced stimulation-induced T cell proliferation, impaired IL-2 and TNF-α production, as well as defective Th17 differentiation. Consequently, Malt1(PD/PD) mice were protected in a Th17-dependent experimental autoimmune encephalomyelitis model. Surprisingly, Malt1(PD/PD) animals developed a multiorgan inflammatory pathology, characterized by Th1 and Th2/0 responses and enhanced IgG1 and IgE levels, which was delayed by wild-type regulatory T cell reconstitution. We therefore propose that the pathology characterizing Malt1(PD/PD) animals arises from an immune imbalance featuring pathogenic Th1- and Th2/0-skewed effector responses and reduced immunosuppressive compartments. These data uncover a previously unappreciated key function of MALT1 protease activity in immune homeostasis and underline its relevance in human health and disease.
Resumo:
Wound healing disturbance is a common complication following surgery, but the underlying cause sometimes remains elusive. A 50-year-old Caucasian male developed an initially misunderstood severe wound healing disturbance following colon and abdominal wall surgery. An untreated alpha-1-antitrypsin (AAT) deficiency in the patient's medical history, known since 20 years and clinically apparent as a mild to moderate chronic obstructive pulmonary disease, was eventually found to be at its origin. Further clinical work-up showed AAT serum levels below 30% of the lower reference value; phenotype testing showed a ZZ phenotype and a biopsy taken from the wound area showed the characteristic, disease-related histological pattern of necrotising panniculitits. Augmentation therapy with plasma AAT was initiated and within a few weeks, rapid and adequate would healing was observed. AAT deficiency is an uncommon but clinically significant, possible cause of wound healing disturbances. An augmentation therapy ought to be considered in affected patients during the perioperative period.
Resumo:
Steroidogenic factor 1 (NR5A1/SF-1) mutations usually manifest in 46,XY individuals with variable degrees of disordered sex development and in 46,XX women with ovarian insufficiency. So far, there is no genotype-phenotype correlation. The broad spectrum of phenotype with NR5A1 mutations may be due to a second hit in a gene with similar function to NR5A1/SF-1. Liver receptor homologue-1 (LRH-1/NR5A2) might be a good candidate. We performed in vitro studies for the interplay between SF-1, LRH-1 and DAX-1, expression profiles in human steroidogenic tissues, and NR5A2 genetic studies in a cohort (11 patients, 8 relatives, 11 families) harboring heterozygote NR5A1/SF-1 mutations. LRH-1 isoforms transactivate the CYP17A1 and HSD3B2 promoters similarly to SF-1 and compensate for SF-1 deficiency. DAX-1 inhibits SF-1- and LRH-1-mediated transactivation. LRH-1 is found expressed in human adult and fetal adrenals and testes. However, no NR5A2/LRH-1 mutations were detected in 14 individuals with heterozygote NR5A1/SF-1 mutations. These findings demonstrate that in vitro LRH-1 can act like SF-1 and compensate for its deficiency. Expression of LRH-1 in fetal testis suggests a role in male gonadal development. However, as we found no NR5A2/LRH-1 mutations, the 'second genetic hit' in SF-1 patients explaining the broad phenotypic variability remains elusive.
Resumo:
BACKGROUND/AIMS Controversies still exist regarding the evaluation of growth hormone deficiency (GHD) in childhood at the end of growth. The aim of this study was to describe the natural history of GHD in a pediatric cohort. METHODS This is a retrospective study of a cohort of pediatric patients with GHD. Cases of acquired GHD were excluded. Univariate logistic regression was used to identify predictors of GHD persisting into adulthood. RESULTS Among 63 identified patients, 47 (75%) had partial GHD at diagnosis, while 16 (25%) had complete GHD, including 5 with multiple pituitary hormone deficiencies. At final height, 50 patients underwent repeat stimulation testing; 28 (56%) recovered and 22 (44%) remained growth hormone (GH) deficient. Predictors of persisting GHD were: complete GHD at diagnosis (OR 10.1, 95% CI 2.4-42.1), pituitary stalk defect or ectopic pituitary gland on magnetic resonance imaging (OR 6.5, 95% CI 1.1-37.1), greater height gain during GH treatment (OR 1.8, 95% CI 1.0-3.3), and IGF-1 level <-2 standard deviation scores (SDS) following treatment cessation (OR 19.3, 95% CI 3.6-103.1). In the multivariate analysis, only IGF-1 level <-2 SDS (OR 13.3, 95% CI 2.3-77.3) and complete GHD (OR 6.3, 95% CI 1.2-32.8) were associated with the outcome. CONCLUSION At final height, 56% of adolescents with GHD had recovered. Complete GHD at diagnosis, low IGF-1 levels following retesting, and pituitary malformation were strong predictors of persistence of GHD.
Resumo:
Growth hormone replacement therapy (GHRT) increases exercise capacity and insulin resistance while it decreases fat mass in growth hormone-deficient patients (GHD). Ectopic lipids (intramyocellular (IMCL) and intrahepatocellular lipids (IHCL) are related to insulin resistance. The effect of GHRT on ectopic lipids is unknown. It is hypothesized that exercise-induced utilization of ectopic lipids is significantly decreased in GHD patients and normalized by GHRT. GHD (4 females, 6 males) and age/gender/waist-matched control subjects (CS) were studied. VO2max was assessed on a treadmill and insulin sensitivity determined by a two-step hyperinsulinaemic-euglycaemic clamp. Visceral (VAT) and subcutaneous (SAT) fat were quantified by MR-imaging. IHCL and IMCL were measured before and after a 2 h exercise at 50-60% of VO2max using MR-spectroscopy (∆IMCL, ∆IHCL). Identical investigations were performed after 6 months of GHRT. VO2max was similar in GHD and CS and significantly increased after GHRT; GHRT significantly decreased SAT and VAT. 2 h-exercise resulted in a decrease in IMCL (significant in CS and GHRT) and a significant increase in IHCL in CS and GHD pre and post GHRT. GHRT didn't significantly impact on ∆IMCL and ∆IHCL. We conclude that aerobic exercise affects ectopic lipids in patients and controls. GHRT increases exercise capacity without influencing ectopic lipids.
Resumo:
Hexanucleotide repeat expansions in the C9ORF72 gene are causally associated with frontotemporal lobar dementia (FTLD) and/or amyotrophic lateral sclerosis (ALS). The physiological function of the normal C9ORF72 protein remains unclear. In this study, we characterized the subcellular localization of C9ORF72 to processing bodies (P-bodies) and its recruitment to stress granules (SGs) upon stress-related stimuli. Gain of function and loss of function experiments revealed that the long isoform of C9ORF72 protein regulates SG assembly. CRISPR/Cas9-mediated knockdown of C9ORF72 completely abolished SG formation, negatively impacted the expression of SG-associated proteins such as TIA-1 and HuR, and accelerated cell death. Loss of C9ORF72 expression further compromised cellular recovery responses after the removal of stress. Additionally, mimicking the pathogenic condition via the expression of hexanucleotide expansion upstream of C9ORF72 impaired the expression of the C9ORF72 protein, caused an abnormal accumulation of RNA foci, and led to the spontaneous formation of SGs. Our study identifies a novel function for normal C9ORF72 in SG assembly and sheds light into how the mutant expansions might impair SG formation and cellular-stress-related adaptive responses.
Resumo:
Tef [Eragrostis tef (Zucc.) Trotter] and finger millet [Eleusine coracana Gaertn] are staple cereal crops in Africa and Asia with several desirable agronomic and nutritional properties. Tef is becoming a life-style crop as it is gluten-free while finger millet has a low glycemic index which makes it an ideal food for diabetic patients. However, both tef and finger millet have extremely low grain yields mainly due to moisture scarcity and susceptibility of the plants to lodging. In this study, the effects of gibberellic acid (GA) inhibitors particularly paclobutrazol (PBZ) on diverse physiological and yield-related parameters were investigated and compared to GA mutants in rice (Oryza sativa L.). The application of PBZ to tef and finger millet significantly reduced the plant height and increased lodging tolerance. Remarkably, PBZ also enhanced the tolerance of both tef and finger millet to moisture deficit. Under moisture scarcity, tef plants treated with PBZ did not exhibit drought-related symptoms and their stomatal conductance was unaltered, leading to higher shoot biomass and grain yield. Semi-dwarf rice mutants altered in GA biosynthesis, were also shown to have improved tolerance to dehydration. The combination of traits (drought tolerance, lodging tolerance and increased yield) that we found in plants with altered GA pathway is of importance to breeders who would otherwise rely on extensive crossing to introgress each trait individually. The key role played by PBZ in the tolerance to both lodging and drought calls for further studies using mutants in the GA biosynthesis pathway in order to obtain candidate lines which can be incorporated into crop-breeding programs to create lodging tolerant and climate-smart crops.
Resumo:
OBJECTIVE Growth hormone (GH) has a strong lipolytic action and its secretion is increased during exercise. Data on fuel metabolism and its hormonal regulation during prolonged exercise in patients with growth hormone deficiency (GHD) is scarce. This study aimed at evaluating the hormonal and metabolic response during aerobic exercise in GHD patients. DESIGN Ten patients with confirmed GHD and 10 healthy control individuals (CI) matched for age, sex, BMI, and waist performed a spiroergometric test to determine exercise capacity (VO2max). Throughout a subsequent 120-minute exercise on an ergometer at 50% of individual VO2max free fatty acids (FFA), glucose, GH, cortisol, catecholamines and insulin were measured. Additionally substrate oxidation assessed by indirect calorimetry was determined at begin and end of exercise. RESULTS Exercise capacity was lower in GHD compared to CI (VO2max 35.5±7.4 vs 41.5±5.5ml/min∗kg, p=0.05). GH area under the curve (AUC-GH), peak-GH and peak-FFA were lower in GHD patients during exercise compared to CI (AUC-GH 100±93.2 vs 908.6±623.7ng∗min/ml, p<0.001; peak-GH 1.5±1.53 vs 12.57±9.36ng/ml, p<0.001, peak-FFA 1.01±0.43 vs 1.51±0.56mmol/l, p=0.036, respectively). There were no significant differences for insulin, cortisol, catecholamines and glucose. Fat oxidation at the end of exercise was higher in CI compared to GHD patients (295.7±73.9 vs 187.82±103.8kcal/h, p=0.025). CONCLUSION A reduced availability of FFA during a 2-hour aerobic exercise and a reduced fat oxidation at the end of exercise may contribute to the decreased exercise capacity in GHD patients. Catecholamines and cortisol do not compensate for the lack of the lipolytic action of GH in patients with GHD.
Resumo:
During the last months, the number of reports on Holstein calves suffering from incurable idiopathic diarrhea dramatically increased. Affected calves showed severe hypocholesterolemia and mostly died within days up to a few months after birth. This new autosomal monogenic recessive inherited fat metabolism disorder, termed cholesterol deficiency (CD), is caused by a loss of function mutation of the bovine gene. The objective of the present study was to investigate specific components of lipid metabolism in 6 homozygous for the mutation (CDS) and 6 normal Holstein calves with different genotypes. Independent of sex, CDS had significantly lower plasma concentrations of total cholesterol (TC), free cholesterol (FC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL-C), triacylglycerides (TAG), and phospholipids (PL) compared with homozygous wild-type calves ( < 0.05). Furthermore, we studied the effect of the genotype on cholesterol metabolism in adult Holstein breeding bulls of Swissgenetics. Among a total of 254 adult males, the homozygous mutant genotype was absent, 36 bulls were heterozygous carriers (CDC), and 218 bulls were homozygous wild-type (CDF). In CDC bulls, plasma concentrations of TC, FC, HDL-C, LDL-C, VLDL-C, TAG, and PL were lower compared with CDF bulls ( < 0.05). The ratios of FC:cholesteryl esters (CE) and FC:TC were higher in CDC bulls compared with CDF bulls, whereas the ratio of CE:TC was lower in CDC bulls compared with CDF bulls ( < 0.01). In conclusion, the CD-associated mutation was shown to affect lipid metabolism in affected Holstein calves and adult breeding bulls. Besides cholesterol, the concentrations of PL, TAG, and lipoproteins also were distinctly reduced in homozygous and heterozygous carriers of the mutation. Beyond malabsorption of dietary lipids, deleterious effects of apolipoprotein B deficiency on hepatic lipid metabolism, steroid biosynthesis, and cell membrane function can be expected, which may result in unspecific symptoms of reduced fertility, growth, and health.
Resumo:
Senescence-associated coordination in amounts of enzymes localized in different cellular compartments were determined in attached leaves of young wheat (Triticum aestivum L. cv. Arina) plants. Senescence was initiated at the time of full leaf elongation based on declines in total RNA and soluble protein. Removal of N from the growth medium just at the time of full leaf elongation enhanced the rate of senescence. Sustained declines in the amount of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39), and a marked decrease in the rbcS transcripts, just after full leaf elongation indicated that Rubisco synthesis/degradation was very sensitive to the onset of senescence. Rubisco activase amount also declined during senescence but the proportion of rca transcript relative to the total poly A RNA pool increased 3-fold during senescence. Thus, continued synthesis of activase may be required to maintain functional Rubisco throughout senescence. N stress led to declines in the amount of proteins located in the chloroplast, the peroxisome and the cytosol. Transcripts of the Clp protease subunits also declined in response to N stress, indicating that Clp is not a senescence-specific protease. In contrast to the other proteins, mitochondrial NADH-glutamate dehydrogenase (EC 1.4.1.2) was relatively stable during senescence and was not affected by N stress. During natural senescence with adequate plant nitrate supply the amount of nitrite reductase (EC 1.7.7.1) increased, and those of glutamine synthetase (EC 1.4.7.1) and glutamate synthase (EC 6.3.1.2) were stable. These results indicated that N assimilatory capacity can continue or even increase during senescence if the substrate supply is maintained. Differential stabilities of proteins, even within the same cellular compartment, indicate that proteolytic activity during senescence must be highly regulated.
Resumo:
BACKGROUND Cholesterol deficiency (CD), a newly identified autosomal recessive genetic defect in Holstein cattle, is associated with clinical signs of diarrhea, failure to thrive, and hypocholesterolemia. HYPOTHESIS/OBJECTIVES The objective is to describe the clinicopathological phenotype of affected Holstein cattle homozygous for the causative apolipoprotein B gene (APOB) mutation. ANIMALS Six Holstein cattle, 5 calves with a clinical history of chronic diarrhea, and 1 heifer with erosions in the buccal cavity and neurologic symptoms were admitted to the Clinic for Ruminants. METHODS This case review included a full clinical examination, a complete blood count, blood chemistry, and measurements of cholesterol and triglycerides. The animals were euthanized and necropsied. A PCR-based direct gene test was applied to determine the APOB genotype. RESULTS All 6 animals were inbred, could be traced back to the sire Maughlin Storm, and were confirmed homozygous for the APOB mutation. The clinical phenotype included poor development, underweight, and intermittent diarrhea in the calves, and neurologic signs in the heifer included hypermetria and pacing. Hypocholesterolemia and low triglycerides concentrations were present in all animals. The pathological phenotype of all animals was steatorrhea with enterocytes of the small intestine containing intracytoplasmic lipid vacuoles. The peripheral nervous system of the heifer displayed degenerative changes. CONCLUSIONS AND CLINICAL IMPORTANCE Suspicion of CD in Holstein cattle is based on the presence of chronic diarrhea with no evidence of primary infections. Confirmation of the associated APOB gene mutation is needed. Additionally, the heifer demonstrated primarily signs of neurologic disease providing an unexpected phenotype of CD.
Resumo:
IRT1 and IRT2 are members of the Arabidopsis ZIP metal transporter family that are specifically induced by iron deprivation in roots and act as heterologous suppressors of yeast mutations inhibiting iron and zinc uptake. Although IRT1 and IRT2 are thought to perform redundant functions as root-specific metal transporters, insertional inactivation of the IRT1 gene alone results in typical symptoms of iron deficiency causing severe leaf chlorosis and lethality in soil. The irt1 mutation is characterized by specific developmental defects, including a drastic reduction of chloroplast thylakoid stacking into grana and lack of palisade parenchyma differentiation in leaves, reduced number of vascular bundles in stems, and irregular patterns of enlarged endodermal and cortex cells in roots. Pulse labeling with 59Fe through the root system shows that the irt1 mutation reduces iron accumulation in the shoots. Short-term labeling with 65Zn reveals no alteration in spatial distribution of zinc, but indicates a lower level of zinc accumulation. In comparison to wild-type, the irt1 mutant responds to iron and zinc deprivation by altered expression of certain zinc and iron transporter genes, which results in the activation of ZIP1 in shoots, reduction of ZIP2 transcript levels in roots, and enhanced expression of IRT2 in roots. These data support the conclusion that IRT1 is an essential metal transporter required for proper development and regulation of iron and zinc homeostasis in Arabidopsis.