172 resultados para auditory EEG
Resumo:
Objective Diagnosis of semantic dementia relies on cost-intensive MRI or PET, although resting EEG markers of other dementias have been reported. Yet the view still holds that resting EEG in patients with semantic dementia is normal. However, studies using increasingly sophisticated EEG analysis methods have demonstrated that slightest alterations of functional brain states can be detected. Methods We analyzed the common four resting EEG microstates (A, B, C, and D) of 8 patients with semantic dementia in comparison with 8 healthy controls and 8 patients with Alzheimer’s disease. Results Topographical differences between the groups were found in microstate classes B and C, while microstate classes A and D were comparable. The data showed that the semantic dementia group had a peculiar microstate E, but the commonly found microstate C was lacking. Furthermore, the presence of microstate E was significantly correlated with lower MMSE and language scores. Conclusion Alterations in resting EEG can be found in semantic dementia. Topographical shifts in microstate C might be related to semantic memory deficits. Significance This is the first study that discovered resting state EEG abnormality in semantic dementia. The notion that resting EEG in this dementia subtype is normal has to be revised.
Resumo:
Schizophrenia patients show abnormalities in a broad range of task demands. Therefore, an explanation common to all these abnormalities has to be sought independently of any particular task, ideally in the brain dynamics before a task takes place or during resting state. For the neurobiological investigation of such baseline states, EEG microstate analysis is particularly well suited, because it identifies subsecond global states of stable connectivity patterns directly related to the recruitment of different types of information processing modes (e.g., integration of top-down and bottom-up information). Meanwhile, there is an accumulation of evidence that particular microstate networks are selectively affected in schizophrenia. To obtain an overall estimate of the effect size of these microstate abnormalities, we present a systematic meta-analysis over all studies available to date relating EEG microstates to schizophrenia. Results showed medium size effects for two classes of microstates, namely, a class labeled C that was found to be more frequent in schizophrenia and a class labeled D that was found to be shortened. These abnormalities may correspond to core symptoms of schizophrenia, e.g., insufficient reality testing and self-monitoring as during auditory verbal hallucinations. As interventional studies have shown that these microstate features may be systematically affected using antipsychotic drugs or neurofeedback interventions, these findings may help introducing novel diagnostic and treatment options.
Resumo:
A common finding in time psychophysics is that temporal acuity is much better for auditory than for visual stimuli. The present study aimed to examine modality-specific differences in duration discrimination within the conceptual framework of the Distinct Timing Hypothesis. This theoretical account proposes that durations in the lower milliseconds range are processed automatically while longer durations are processed by a cognitive mechanism. A sample of 46 participants performed two auditory and visual duration discrimination tasks with extremely brief (50-ms standard duration) and longer (1000-ms standard duration) intervals. Better discrimination performance for auditory compared to visual intervals could be established for extremely brief and longer intervals. However, when performance on duration discrimination of longer intervals in the 1-s range was controlled for modality-specific input from the sensory-automatic timing mechanism, the visual-auditory difference disappeared completely as indicated by virtually identical Weber fractions for both sensory modalities. These findings support the idea of a sensory-automatic mechanism underlying the observed visual-auditory differences in duration discrimination of extremely brief intervals in the millisecond range and longer intervals in the 1-s range. Our data are consistent with the notion of a gradual transition from a purely modality-specific, sensory-automatic to a more cognitive, amodal timing mechanism. Within this transition zone, both mechanisms appear to operate simultaneously but the influence of the sensory-automatic timing mechanism is expected to continuously decrease with increasing interval duration.
Resumo:
OBJECTIVE In patients with epilepsy, seizure relapse and behavioral impairments can be observed despite the absence of interictal epileptiform discharges (IEDs). Therefore, the characterization of pathologic networks when IEDs are not present could have an important clinical value. Using Granger-causal modeling, we investigated whether directed functional connectivity was altered in electroencephalography (EEG) epochs free of IED in left and right temporal lobe epilepsy (LTLE and RTLE) compared to healthy controls. METHODS Twenty LTLE, 20 RTLE, and 20 healthy controls underwent a resting-state high-density EEG recording. Source activity was obtained for 82 regions of interest (ROIs) using an individual head model and a distributed linear inverse solution. Granger-causal modeling was applied to the source signals of all ROIs. The directed functional connectivity results were compared between groups and correlated with clinical parameters (duration of the disease, age of onset, age, and learning and mood impairments). RESULTS We found that: (1) patients had significantly reduced connectivity from regions concordant with the default-mode network; (2) there was a different network pattern in patients versus controls: the strongest connections arose from the ipsilateral hippocampus in patients and from the posterior cingulate cortex in controls; (3) longer disease duration was associated with lower driving from contralateral and ipsilateral mediolimbic regions in RTLE; (4) aging was associated with a lower driving from regions in or close to the piriform cortex only in patients; and (5) outflow from the anterior cingulate cortex was lower in patients with learning deficits or depression compared to patients without impairments and to controls. SIGNIFICANCE Resting-state network reorganization in the absence of IEDs strengthens the view of chronic and progressive network changes in TLE. These resting-state connectivity alterations could constitute an important biomarker of TLE, and hold promise for using EEG recordings without IEDs for diagnosis or prognosis of this disorder.
Resumo:
In line with current memory theories of a perception-memory continuum along the ventral visual pathway, there is evidence that the specific profile of enhanced memory in special populations (e.g. synaesthesia) is based on increased perceptual sensitivity. The main goal of this study was to test in a more general population, if increased perceptual sensitivity is indeed associated with enhanced memory performance. We measured ERPs in response to simple perceptual stimuli biasing either the ventral or the dorsal route and established if perceptual sensitivity in response to ventrally (but not dorsally) processed stimuli is associated with visual short term memory performance in a change detection task. Preliminary results confirm the hypothesis and strengthen the assumption of a perceptual-memory-continuum.
Resumo:
Drawing inferences from past experiences enables adaptive behavior in future situations. Inference has been shown to depend on hippocampal processes. Usually, inference is considered a deliberate and effortful mental act which happens during retrieval, and requires the focus of our awareness. Recent fMRI studies hint at the possibility that some forms of hippocampus-dependent inference can also occur during encoding and possibly also outside of awareness. Here, we sought to further explore the feasibility of hippocampal implicit inference, and specifically address the temporal evolution of implicit inference using intracranial EEG. Presurgical epilepsy patients with hippocampal depth electrodes viewed a sequence of word pairs, and judged the semantic fit between two words in each pair. Some of the word pairs entailed a common word (e.g.,‘winter - red’, ‘red - cat’) such that an indirect relation was established in following word pairs (e.g, ‘winter - cat’). The behavioral results suggested that drawing inference implicitly from past experience is feasible because indirect relations seemed to foster ‘fit’ judgments while the absence of indirect relations fostered 'do not fit' judgments, even though the participants were unaware of the indirect relations. A event-related potential (ERP) difference emerging 400 ms post-stimulus was evident in the hippocampus during encoding, suggesting that indirect relations were already established automatically during encoding of the overlapping word pairs. Further ERP differences emerged later post-stimulus (1500 ms), were modulated by the participants' responses and were evident during encoding and test. Furthermore, response-locked ERP effects were evident at test. These ERP effects could hence be a correlate of the interaction of implicit memory with decision-making. Together, the data map out a time-course in which the hippocampus automatically integrates memories from discrete but related episodes to implicitly influence future decision making.
Resumo:
Despite major progress, currently available treatment options for patients suffering from schizophrenia remain suboptimal. Antipsychotic medication is one such option, and is helpful in acute phases of the disease. However, antipsychotics cause significant side-effects that often require additional medication, and can even trigger the discontinuation of treatment. Taken together, along with the fact that 20-30% of patients are medication-resistant, it is clear that new medical care options should be developed for patients with schizophrenia. Besides medication, an emerging option to treat psychiatric symptoms is through the use of neurofeedback. This technique has proven efficacy for other disorders and, more importantly, has also proven to be feasible in patients with schizophrenia. One of the major advantages of this approach is that it allows for the influence of brain states that otherwise would be inaccessible; i.e. the physiological markers underlying psychotic symptoms. EEG resting-state microstates are a very interesting electrophysiological marker of schizophrenia symptoms. Precisely, a specific class of resting-state microstates, namely microstate class D, has consistently been found to show a temporal shortening in patients with schizophrenia compared to controls, and this shortening is correlated with the presence positive psychotic symptoms. Under the scope of biological psychiatry, appropriate treatment of psychotic symptoms can be expected to modify the underlying physiological markers accompanying behavioral manifestations of a disease. We reason that if abnormal temporal parameters of resting-state microstates seem to be related to positive symptoms in schizophrenia, regulating this EEG feature might be helpful as a treatment for patients. The goal of this thesis was to prove the feasibility of microstate class D contribution self-regulation via neurofeedback. Given that no other study has attempted to regulate microstates via neurofeedback, we first tested its feasibility in a population of healthy subjects. In the first paper we describe the methodological characteristics of the neurofeedback protocol and its implementation. Neurofeedback performance was assessed by means of linear mixed effects modeling, which provided a complete profile of the neurofeedback’s training response within and between-subjects. The protocol included 20 training sessions, and each session contained three conditions: baseline (resting-state) and two active conditions: training (auditory feedback upon self-regulation performance) and transfer (self-regulation with no feedback). With linear modeling we obtained performance indices for each of them as follows: baseline carryover (baseline increments time-dependent) and learning and aptitude for each of the active conditions. Learning refers to the increase/decrease of the microstate class D contribution, time-dependent during each active condition, and aptitude refers to the constant difference of the microstate class D contribution between each active condition and baseline independent of time. The indices provided are discussed in terms of tailoring neurofeedback treatment to individual profiles so that it can be applied in future studies or clinical practice. In our sample of participants, neurofeedback proved feasible, as all participants at least showed positive results in one of the aforementioned learning indices. Furthermore, between-subjects we observed that the contribution of microstate class D across-sessions increased by 0.42% during baseline, 1.93% during training trials, and 1.83% during transfer. This range is expected to be effective in treating psychotic symptoms in patients. In the second paper presented in this thesis, we explored the possible predictors of neurofeedback success among psychological variables measured with questionnaires. An interesting finding was the negative correlation between “motivational incongruence” and some of the neurofeedback performance indices. Even though this finding requires replication, we discuss it in terms of the interfering effects of incompatible psychological processes with neurofeedback training requirements. In the third paper, we present a meta-analysis on all available studies that have related resting-state microstate abnormalities and schizophrenia. We obtained medium effect sizes for two microstate classes, namely C and D. Combining the meta-analysis results with the fact that microstate class D abnormalities are correlated with the presence of positive symptoms in patients with schizophrenia, these results add further support for the training of this precise microstate. Overall, the results obtained in this study encourage the implementation of this protocol in a population of patients with schizophrenia. However, future studies will have to show whether patients will be able to successfully self-regulate the contribution of microstate class D and, if so, whether this regulation will have an impact on symptomatology.