195 resultados para University of Arizona.
Resumo:
Carbonaceous particles that comprise organic carbon (OC) and elemental carbon (EC) are of increasing interest in climate research because of their influence on the radiation balance of the Earth. The radiocarbon determination of particulate OC and EC extracted from ice cores provides a powerful tool to reconstruct the long-term natural and anthropogenic emissions of carbonaceous particles. However, this C-14-based source apportionment method has not been applied for the firn section, which is the uppermost part of Alpine glaciers with a typical thickness of up to 50 m. In contrast to glacier ice, firn samples are more easily contaminated through drilling and handling operations. In this study, an alternative decontamination method for firn samples consisting of chiselling off the outer parts instead of rinsing them was developed and verified. The obtained procedural blank of 2.8 +/- 0.8 mu g C for OC is a factor of 2 higher compared to the rinsing method used for ice, but still relatively low compared to the typical OC concentration in firn samples from Alpine glaciers. The EC blank of 0.3 +/- 0.1 mu g C is similar for both methods. For separation of OC and EC for subsequent C-14 analysis, a thermal-optical method instead of the purely thermal method was applied for the first time to firn and ice samples, resulting in a reduced uncertainty of both the mass and C-14 determination. OC and EC concentrations as well as their corresponding fraction of modern for firn and ice samples from Fiescherhorn and Jungfraujoch agree well with published results, validating the new method.
Resumo:
Radiocarbon analysis of the carbonaceous aerosol allows an apportionment of fossil and non-fossil sources of airborne particulate matter (PM). A chemical separation of total carbon (TC) into its subfractions organic carbon (OC) and elemental carbon (EC) refines this powerful technique, as OC and EC originate from different sources and undergo different processes in the atmosphere. Although C-14 analysis of TC, EC, and OC has recently gained increasing attention, interlaboratory quality assurance measures have largely been missing, especially for the isolation of EC and OC. In this work, we present results from an intercomparison of 9 laboratories for C-14 analysis of carbonaceous aerosol samples on quartz fiber filters. Two ambient PM samples and 1 reference material (RM 8785) were provided with representative filter blanks. All laboratories performed C-14 determinations of TC and a subset of isolated EC and OC for isotopic measurement. In general, C-14 measurements of TC and OC agreed acceptably well between the laboratories, i.e. for TC within 0.015-0.025 (FC)-C-14 for the ambient filters and within 0.041 (FC)-C-14 for RM 8785. Due to inhomogeneous filter loading, RM 8785 demonstrated only limited applicability as a reference material for C-14 analysis of carbonaceous aerosols. C-14 analysis of EC revealed a large deviation between the laboratories of 28-79 as a consequence of different separation techniques. This result indicates a need for further discussion on optimal methods of EC isolation for C-14 analysis and a second stage of this intercomparison.
Resumo:
Establishing precise age-depth relationships of high-alpine ice cores is essential in order to deduce conclusive paleoclimatic information from these archives. Radiocarbon dating of carbonaceous aerosol particles incorporated in such glaciers is a promising tool to gain absolute ages, especially from the deepest parts where conventional methods are commonly inapplicable. In this study, we present a new validation for a published C-14 dating method for ice cores. Previously C-14-dated horizons of organic material from the Juvfonne ice patch in central southern Norway (61.676 degrees N, 8.354 degrees E) were used as reference dates for adjacent ice layers, which were C-14 dated based on their particulate organic carbon (POC) fraction. Multiple measurements were carried out on 3 sampling locations within the ice patch featuring modern to multimillennial ice. The ages obtained from the analyzed samples were in agreement with the given age estimates. In addition to previous validation work, this independent verification gives further confidence that the investigated method provides the actual age of the ice.
Resumo:
Excavated by French Egyptologist P. Montet in the 1920s, Royal Tomb II at Byblos (Bronze Age Gubla) yielded a significant number of Egyptian objects of the Middle Kingdom. Among these finds is a stone vessel with lid that carries the cartouche of a king named Amenemhat, often believed to be Amenemhat IV of the late Middle Kingdom. Hitherto unnoticed by the scholarly community, however, are two Egyptian measure capacity signs on the stone vessel itself. Since measure capacity signs on stone vessels dating to the Middle Kingdom are only rarely attested even in Egypt, the signs on the stone vessel from Royal Tomb II at Byblos therefore contribute considerably to our understanding of the use and application of such signs. The article deals with the examination of these signs and tries to correlate them with the actual capacity of the vessel.
Resumo:
Radiocarbon offers a unique possibility for unambiguous source apportionment of carbonaceous particles due to a direct distinction of non-fossil and fossil carbon. In this work, particulate matter of different size fractions was collected at 4 sites in Switzerland to examine whether fine and coarse carbonaceous particles exhibit different fossil and contemporary sources. Elemental carbon (EC) and organic carbon (OC) as well as water-soluble OC (WSOC) and water-insoluble OC (WINSOC) were separated and determined for subsequent 14C measurement. In general, both fossil and non-fossil fractions in OC and EC were found more abundant in the fine than in the coarse mode. However, a substantial fraction (~20 ± 5%) of fossil EC was found in coarse particles, which could be attributed to traffic-induced non-exhaust emissions. The contribution of biomass burning to coarse-mode EC in winter was relatively high, which is likely associated to the coating of EC with organic and/or inorganic substances emitted from intensive wood burning. Further, fossil OC (i.e. from vehicle emissions) was found to be smaller than non-fossil OC due to the presence of primary biogenic OC and/or growing in size of wood-burning OC particles during aging processes. 14C content in WSOC indicated that the second organic carbon rather stems from non-fossil precursors for all samples. Interestingly, both fossil and non-fossil WINSOC concentrations were found to be higher in fine particles than in coarse particles in winter, which is likely due to primary wood burning emissions and/or secondary formation of WINSOC.