174 resultados para PORTAL-VEIN THROMBOSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maternal thromboembolism and a spectrum of placenta-mediated complications including the pre-eclampsia syndromes, fetal growth restriction, fetal loss, and abruption manifest a shared etiopathogenesis and predisposing risk factors. Furthermore, these maternal and fetal complications are often linked to subsequent maternal health consequences that comprise the metabolic syndrome, namely, thromboembolism, chronic hypertension, and type II diabetes. Traditionally, several lines of evidence have linked vasoconstriction, excessive thrombosis and inflammation, and impaired trophoblast invasion at the uteroplacental interface as hallmark features of the placental complications. "Omic" technologies and biomarker development have been largely based upon advances in vascular biology, improved understanding of the molecular basis and biochemical pathways responsible for the clinically relevant diseases, and increasingly robust large cohort and/or registry based studies. Advances in understanding of innate and adaptive immunity appear to play an important role in several pregnancy complications. Strategies aimed at improving prediction of these pregnancy complications are often incorporating hemodynamic blood flow data using non-invasive imaging technologies of the utero-placental and maternal circulations early in pregnancy. Some evidence suggests that a multiple marker approach will yield the best performing prediction tools, which may then in turn offer the possibility of early intervention to prevent or ameliorate these pregnancy complications. Prediction of maternal cardiovascular and non-cardiovascular consequences following pregnancy represents an important area of future research, which may have significant public health consequences not only for cardiovascular disease, but also for a variety of other disorders, such as autoimmune and neurodegenerative diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND The diagnostic performance of biochemical scores and artificial neural network models for portal hypertension and cirrhosis is not well established. AIMS To assess diagnostic accuracy of six serum scores, artificial neural networks and liver stiffness measured by transient elastography, for diagnosing cirrhosis, clinically significant portal hypertension and oesophageal varices. METHODS 202 consecutive compensated patients requiring liver biopsy and hepatic venous pressure gradient measurement were included. Several serum tests (alone and combined into scores) and liver stiffness were measured. Artificial neural networks containing or not liver stiffness as input variable were also created. RESULTS The best non-invasive method for diagnosing cirrhosis, portal hypertension and oesophageal varices was liver stiffness (C-statistics=0.93, 0.94, and 0.90, respectively). Among serum tests/scores the best for diagnosing cirrhosis and portal hypertension and oesophageal varices were, respectively, Fibrosis-4, and Lok score. Artificial neural networks including liver stiffness had high diagnostic performance for cirrhosis, portal hypertension and oesophageal varices (accuracy>80%), but were not statistically superior to liver stiffness alone. CONCLUSIONS Liver stiffness was the best non-invasive method to assess the presence of cirrhosis, portal hypertension and oesophageal varices. The use of artificial neural networks integrating different non-invasive tests did not increase the diagnostic accuracy of liver stiffness alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND The pathomechanisms underlying very late stent thrombosis (VLST) after implantation of drug-eluting stents (DES) are incompletely understood. Using optical coherence tomography, we investigated potential causes of this adverse event. METHODS AND RESULTS Between August 2010 and December 2014, 64 patients were investigated at the time point of VLST as part of an international optical coherence tomography registry. Optical coherence tomography pullbacks were performed after restoration of flow and analyzed at 0.4 mm. A total of 38 early- and 20 newer-generation drug-eluting stents were suitable for analysis. VLST occurred at a median of 4.7 years (interquartile range, 3.1-7.5 years). An underlying putative cause by optical coherence tomography was identified in 98% of cases. The most frequent findings were strut malapposition (34.5%), neoatherosclerosis (27.6%), uncovered struts (12.1%), and stent underexpansion (6.9%). Uncovered and malapposed struts were more frequent in thrombosed compared with nonthrombosed regions (ratio of percentages, 8.26; 95% confidence interval, 6.82-10.04; P<0.001 and 13.03; 95% confidence interval, 10.13-16.93; P<0.001, respectively). The maximal length of malapposed or uncovered struts (3.40 mm; 95% confidence interval, 2.55-4.25; versus 1.29 mm; 95% confidence interval, 0.81-1.77; P<0.001), but not the maximal or average axial malapposition distance, was greater in thrombosed compared with nonthrombosed segments. The associations of both uncovered and malapposed struts with thrombus were consistent among early- and newer-generation drug-eluting stents. CONCLUSIONS The leading associated findings in VLST patients in descending order were malapposition, neoatherosclerosis, uncovered struts, and stent underexpansion without differences between patients treated with early- and new-generation drug-eluting stents. The longitudinal extension of malapposed and uncovered stent was the most important correlate of thrombus formation in VLST.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To describe and follow cotton wool spots (CWS) in branch retinal vein occlusion (BRVO) using multimodal imaging. METHODS: In this prospective cohort study including 24 patients with new-onset BRVO, CWS were described and analyzed in color fundus photography (CF), spectral domain optical coherence tomography (SD-OCT), infrared (IR) and fluorescein angiography (FA) every 3 months for 3 years. The CWS area on SD-OCT and CF was evaluated using OCT-Tool-Kit software: CWS were marked in each single OCT B-scan and the software calculated the area by interpolation. RESULTS: 29 central CWS lesions were found. 100% of these CWS were visible on SD-OCT, 100% on FA and 86.2% on IR imaging, but only 65.5% on CF imaging. CWS were visible for 12.4 ± 7.5 months on SD-OCT, for 4.4 ± 3 months and 4.3 ± 3.4 months on CF and on IR, respectively, and for 17.5 ± 7.1 months on FA. The evaluated CWS area on SD-OCT was larger than on CF (0.26 ± 0.17 mm(2) vs. 0.13 ± 0.1 mm(2), p < 0.0001). The CWS area on SD-OCT and surrounding pathology such as intraretinal cysts, avascular zones and intraretinal hemorrhage were predictive for how long CWS remained visible (r(2) = 0.497, p < 0.002). CONCLUSIONS: The lifetime and presentation of CWS in BRVO seem comparable to other diseases. SD-OCT shows a higher sensitivity for detecting CWS compared to CF. The duration of visibility of CWS varies among different image modalities and depends on the surrounding pathology and the CWS size.