180 resultados para Human mesenchymal stem cells
Resumo:
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease, fatal within 1 to 5 years after onset of symptoms. About 3 out of 100’000 persons are diagnosed with ALS and there is still no cure available [1, 2]. 95% of all cases occur sporadically and the aetiology remains largely unknown [XXXX]. However, up to now 16 genes were identified to play a role in the development of familial ALS. One of these genes is FUS that encodes for the protein fused in sarcoma/translocated in liposarcoma (FUS/TLS). Mutations in this gene are responsible for some cases of sporadic as well as of inherited ALS [3]. FUS belongs to the family of heterogeneous nuclear ribonucleoproteins and is predicted to be involved in several cellular functions like transcription regulation [4], RNA splicing [5, 6], mRNA transport in neurons [7] and microRNA processing [8]. Aberrant accumulation of mutated FUS has been found in the cytoplasm of motor neurons from ALS patients [9]. The mislocalization of FUS is based on a mutation in the nuclear localization signal of FUS [10]. However, it is still unclear if the cytoplasmic localization of FUS leads to a toxic gain of cytoplasmic function and/or a loss of nuclear function that might be crucial in the course of ALS. The goal of this project is to characterize the impact of ALS-associated FUS mutations on in vitro differentiated motor neurons. To this end, we edit the genome of induced pluripotent stem cells (iPSC) using transcription activator-like effector nucleases (TALENs) [11,12] to create three isogenic cell lines, each carrying an ALS-associated FUS mutation (G156E, R244C and P525L). These iPSC’s will then be differentiated to motor neurons according to a recently establishe protocol (Ref Wichterle) and serve to study alterations in the transcriptome, proteome and metabolome upon the expression of ALS-associated FUS. With this approach, we hope to unravel the molecular mechanism leading to FUS-associated ALS and to provide new insight into the emerging connection between misregulation of RNA metabolism and neurodegeneration, a connection that is currently implied in a variety of additional neurological diseases, including spinocerebellar ataxia 2 (SCA-2), spinal muscular atrophy (SMA), fragile X syndrome, and myotonic dystrophy.
Resumo:
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease, fatal within 1 to 5 years after onset of symptoms. About 3 out of 100’000 persons are diagnosed with ALS and there is still no cure available [1, 2]. 95% of all cases occur sporadically and the aetiology remains largely unknown [3]. However, up to now 16 genes were identified to play a role in the development of familial ALS. One of these genes is FUS that encodes for the protein fused in sarcoma (FUS). Mutations in this gene are responsible for some cases of sporadic as well as of inherited ALS [4]. FUS belongs to the family of heterogeneous nuclear ribonucleoproteins and is predicted to be involved in several cellular functions like transcription regulation, RNA splicing, mRNA transport in neurons and microRNA processing [5] Aberrant accumulation of mutated FUS has been found in the cytoplasm of motor neurons from ALS patients [6]. The mislocalization of FUS is based on a mutation in the nuclear localization signal of FUS [7]. However, it is still unclear if the cytoplasmic localization of FUS leads to a toxic gain of cytoplasmic function and/or a loss of nuclear function that might be crucial in the course of ALS. The goal of this project is to characterize the impact of ALS-associated FUS mutations on in vitro differentiated motor neurons. To this end, we edit the genome of induced pluripotent stem cells (iPSC) using transcription activator-like effector nucleases (TALENs) [8,9] to create three isogenic cell lines, each carrying an ALS-associated FUS mutation (G156E, R244C and P525L). These iPSC’s will then be differentiated to motor neurons according to a recently established protocol [10] and serve to study alterations in the transcriptome, proteome and metabolome upon the expression of ALS-associated FUS. With this approach, we hope to unravel the molecular mechanism leading to FUS-associated ALS and to provide new insight into the emerging connection between misregulation of RNA metabolism and neurodegeneration, a connection that is currently implied in a variety of additional neurological diseases, including spinocerebellar ataxia 2 (SCA-2), spinal muscular atrophy (SMA), fragile X syndrome, and myotonic dystrophy. [1] Cleveland, D.W. et al. (2001) Nat Rev Neurosci 2(11): 806-819 [2] Sathasivam, S. (2010) Singapore Med J 51(5): 367-372 [3] Schymick, J.C. et al. (2007) Hum Mol Genet Vol 16: 233-242 [4] Pratt, A.J. et al. (2012). Degener Neurol Neuromuscul Dis 2012(2): 1-14 [5] Lagier-Tourenne, C. Hum Mol Genet, 2010. 19(R1): p. R46-64 [6] Mochizuki, Y. et al. (2012) J Neurol Sci 323(1-2): 85-92 [7] Dormann, D. et al. (2010) EMBO J 29(16): 2841-2857 [8] Hockemeyer, D. et al. (2011) Nat Biotech 29(8): 731-734 [9] Joung, J.K. and J.D. Sander (2013) Nat Rev Mol Cell Biol 14(1): 49-55 [10]Amoroso, M.W. et al. (2013) J Neurosci 33(2): 574-586.
CCL5/RANTES is a key chemoattractant released by degenerative intervertebral discs in organ culture.
Resumo:
Release of chemotactic factors in response to tissue damage has been described for different musculoskeletal tissues, including the intervertebral disc (IVD). This study investigated the chemoattractants that are released by induced degenerative IVDs and may be involved in recruiting mesenchymal stem cells (MSCs). Bovine caudal discs were cultured within a bioreactor and loaded under conditions that mimicked physiological or degenerative settings. Between days 4-6, medium was replaced by PBS, which was subsequently used for proteomic, ELISA and immunoprecipitation analyses of secreted chemokines and cytokines. A Boyden chamber assay was used to observe human MSC migration towards native and chemokine depleted media. Gene expression levels of chemokine receptors in human MSCs were analysed, and CCL5 was localised in bovine and human IVD by immunohistochemistry. Proteomic analysis revealed the presence of CCL5 and CXCL6 within conditioned media. Higher concentrations of CCL5 were found in the degenerative media, and a relationship was found between interleukin-1β and CCL5 concentration. Chemokine immunoprecipitation showed that MSCs had a significantly reduced chemotactic migration towards CCL5-immunoprecipitated and CCL5/CXCL6 co-immunoprecipitated media, whilst CXCL6 depletion did not change MSC chemotaxis. MSCs showed a significant increase in mRNA expression of the CCL5 receptors, CCR1 and CCR4, upon culture in degenerative media. Furthermore, CCL5 was identified in bovine and human disc tissue by immunohistochemistry. Hence, CCL5 may be a key chemoattractant that is produced and released by the intervertebral disc cells. Therefore, these factors could be used to enhance stem/progenitor cell mobilisation in regenerative therapies for early stages of disc degeneration.
Resumo:
Introduction: Intervertebral disc degeneration is associated with loss of nucleus pulposus (NP) tissue and reduced disc height[1]. A number of therapies, including synthetic and natural biomaterials, have been developed to restore full disc function and to minimize the pain and disability caused by this disease. Fibrin-based biomaterials are used as a replacement for NP or as a cell carrier for tissue engineering approaches[2]. While the behavior of such gels is well-characterized from a material point of view, little is known about their contribution to intervertebral disc (IVD) restoration under dynamic loads. The aim of the present study is the evaluation of a hyaluronic acid fibrin-based hydrogel (ProCore) used to repair an in vitro model of disc degeneration under dynamic loading. Methods: In vitro model of disc degeneration was induced in intact coccygeal bovine IVD by papain digestion of the NP as previously described[3]. In order to characterize fibrin hydrogels, four experimental groups were considered: 1) intact IVD (control), 2) IVD injected with PBS, 3) injection of hydrogels in degenerative IVD and 4) injection of hydrogels in combination with human bone marrow-derived mesenchymal stem cells (MSC) in degenerative IVD. All of the groups were subjected to dynamic loading protocols consisting of 0.2MPa static compression superimposed with ±2° torsion at 0.2Hz for 8h per day and maintained for 7 days. Additionally, one group consisted of degenerative IVD injected with hydrogel and subjected to static compression. Disc heights were monitored after the duration of the loading and compared to the initial disc height. The macrostructure of the formed tissue and the cellular distribution was evaluated by histological means. Results: After one week of loading, the degenerative IVD filled with hydrogel in combination with MSC (dynamic load), hydrogels (dynamic load) and hydrogels (static load) showed a reduction in height by 30%, 15% and 20%, respectively, as compared to their initial disc height. Histological sections showed that the HA-fibrin gel fully occupied the nucleotomized region of the disc and that fibrin was effective in filling the discontinuities of the cavity region. Furthermore, the cells were homogenously distributed along the fibrin hydrogels after 7 days of loading. Discussion: In this study, we showed that fibrin hydrogels showed a good integration within the papain-induced model of disc degeneration and can withstand the applied loads. Fibrin hydrogels can contribute to disc restoration by possibly maintaining adequate stiffness of the tissue and thus preventing disorganization of the surrounding IVD. References: 1. Jarman, J.P., Arpinar, V.E., Baruah, D., Klein, A.P., Maiman, D.J., and Tugan Muftuler, L. (2014). Intervertebral disc height loss demonstrates the threshold of major pathological changes during degeneration. Eur Spine J . 2. Colombini, A., Ceriani, C., Banfi, G., Brayda-Bruno, M., and Moretti, M. (2014). Fibrin in intervertebral disc tissue engineering. Tissue Eng Part B Rev . 3. Chan, S.C., Bürki, A., Bonél, H.M., Benneker, L.M., and Gantenbein-Ritter, B. (2013). Papain-induced in vitro disc degeneration model for the study of injectable nucleus pulposus therapy. Spine J 13, 273-283. Acknowledgement We thank the Swiss National Science Foundation SNF #310030_153411 for funding.
Resumo:
Background: The differentiation of ADSC is regulated by many factors, including oxygen tensions. Evidences have suggested that low oxygen tension or hypoxia is involved in the osteogenic, adipogenic differentiations of MSCs. Expansion and induction of ADSCs under hypoxia generally result in enhanced osteogenic, differentiation. Therefore, we analyzed bovine ADSC differentiations in Normoxia and hypoxia conditions Methodology: Recently (<8h) cow tail from a slaughterhouse, take out some fat from the tail and fat cells was isolated by using for isolation of ADSC protocol, the expansion cells were put into osteogenic and adipogenic medium for 3 weeks in hypoxia and normoxia conditions separately and characterized by Von kossa, Alizarin red and Oil red O staining and further by using real-time PCR by using primers of osteocalcin, Collagen type1, cbfa1/runx2, ALP, ostepontin, osteonectin, BMP2, BMP24, BMP27, noggin, gremlin, Nestin and HIF1A,VEGFA,PPARG,Leptin. Results: Our experiment results show hypoxia promotes osteogenesis but suppresses adipogenesis.
Resumo:
BACKGROUND Platelet-rich concentrates are used as a source of growth factors to improve the healing process. The diverse preparation protocols and the gaps in knowledge of their biological properties complicate the interpretation of clinical results. QUESTIONS/PURPOSES In this study we aimed to (1) analyze the concentration and kinetics of growth factors released from leukocyte- and platelet-rich fibrin (L-PRF), leukocyte- and platelet-rich plasma (L-PRP), and natural blood clot during in vitro culture; (2) investigate the migration of mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) as a functional response to the factors released; and (3) uncover correlations between individual growth factors with the initial platelet/leukocyte counts or the induced cell migration. METHODS L-PRF, L-PRP, and natural blood clot prepared from 11 donors were cultured in vitro for 28 days and media supernatants collected after 8 hours and 1, 3, 7, 14, and 28 days. Released transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), insulin growth factor (IGF-1), platelet-derived growth factor AB (PDGF-AB), and interleukin-1β (IL-1β) were measured in the supernatants with enzyme-linked immunosorbent assay. Migration of MSC and HUVEC induced by the supernatants was evaluated in Boyden chambers. RESULTS More TGF-ß1 was released (mean ± SD in pg/mL of blood) from L-PRF (37,796 ± 5492) compared with L-PRP (23,738 ± 6848; p < 0.001) and blood clot (3739 ± 4690; p < 0.001), whereas more VEGF and IL-1ß were released from blood clot (1933 ± 704 and 2053 ± 908, respectively) compared with both L-PRP (642 ± 208; p < 0.001 and 273 ± 386; p < 0.001, respectively) and L-PRF (852 ± 376; p < 0.001 and 65 ± 56, p < 0.001, respectively). No differences were observed in IGF-1 and PDGF-AB released from any of the concentrates. TGF-β1 release peaked at Day 7 in L-PRF and at 8 hours and Day 7 in L-PRP and 8 hours and Day 14 in blood clot. In all concentrates, main release of VEGF occurred between 3 and 7 days and of IL-1β between Days 1 and 7. IGF-1 and PDGF-AB were released until Day 1 in L-PRP and blood clot, in contrast to sustained release over the first 3 days in L-PRF. The strongest migration of MSC occurred in response to L-PRF, and more HUVEC migration was seen in L-PRF and blood clot compared with L-PRP. TGF-β1 correlated with initial platelet counts in L-PRF (Pearson r = 0.66, p = 0.0273) and initial leukocyte counts in L-PRP (Pearson r = 0.83, p = 0.0016). A positive correlation of IL-1β on migration of MSC and HUVEC was revealed (Pearson r = 0.16, p = 0.0208; Pearson r = 0.31, p < 0.001). CONCLUSIONS In comparison to L-PRP, L-PRF had higher amounts of released TGF-β1, a long-term release of growth factors, and stronger induction of cell migration. Future preclinical studies should confirm these data in a defined injury model. CLINICAL RELEVANCE By characterizing the biologic properties of different platelet concentrates in vitro, we may gain a better understanding of their clinical effects and develop guidelines for specific future applications.
Resumo:
BACKGROUND Lymphedema is an underdiagnosed pathology which in industrialized countries mainly affects cancer patients that underwent lymph node dissection and/or radiation. Currently no effective therapy is available so that patients' life quality is compromised by swellings of the concerned body region. This unfortunate condition is associated with body imbalance and subsequent osteochondral deformations and impaired function as well as with an increased risk of potentially life threatening soft tissue infections. METHODS The effects of PRP and ASC on angiogenesis (anti-CD31 staining), microcirculation (Laser Doppler Imaging), lymphangiogenesis (anti-LYVE1 staining), microvascular architecture (corrosion casting) and wound healing (digital planimetry) are studied in a murine tail lymphedema model. RESULTS Wounds treated by PRP and ASC healed faster and showed a significantly increased epithelialization mainly from the proximal wound margin. The application of PRP induced a significantly increased lymphangiogenesis while the application of ASC did not induce any significant change in this regard. CONCLUSIONS PRP and ASC affect lymphangiogenesis and lymphedema development and might represent a promising approach to improve regeneration of lymphatic vessels, restore disrupted lymphatic circulation and treat or prevent lymphedema alone or in combination with currently available lymphedema therapies.
Resumo:
PROBLEM Given the important role of regulatory T cells (Treg) for successful pregnancy, the ability of soluble maternal and fetal pregnancy factors to induce human Treg was investigated. METHOD OF STUDY Peripheral blood mononuclear cells (PBMCs) or isolated CD4+CD25‒ cells were cultured in the presence of pooled second or third trimester pregnancy sera, steroid hormones or supernatants from placental explants, and the numbers and function of induced CD4+CD25+FOXP3+ Treg were analysed. RESULTS Third trimester pregnancy sera and supernatants of early placental explants, but not sex steroid hormones, induced an increase of Tregs from PBMCs. Early placental supernatant containing high levels of tumour necrosis factor-α, interferon-γ, interleukins -1, -6 and -17, soluble human leucocyte antigen-G, and transforming growth factor-β1, increased the proportion of Treg most effectively and was able to induce interleukin-10-secreting-Treg from CD4+CD25‒cells. CONCLUSIONS Compared with circulating maternal factors, placental- and fetal-derived factors appear to exert a more powerful effect on numerical changes of Treg, thereby supporting fetomaternal tolerance during human pregnancy.
Resumo:
Background. Low back pain is an increasing global health problem, which is associated with intervertebral disc (IVD) damage and degeneration. Major changes occur in the nucleus pulposus (NP), with the degradation of the extracellular matrix (ECM).1 Further studies showed that growth factors from transforming growth factor β (TGFβ) and bone morphogenic proteins (BMP) family may induce chondrogenic differentiation of mesenchymal stem cells (MSC).2 Focusing on non-viral gene therapies and their possible translation into the clinics, we investigated if GDF6 (syn. BMP13 or CDMP2) can induce regeneration of degraded NP. We hypothesized that IVD transfected with plasmid over-expressing GDF6 also up-regulates other NP- and chondrogenic cell markers and enhances ECM deposition. Methods. Bovine nucleus pulposus (bNPC) and annulus fibrosus cells (bAFC) were harvested from bovine coccygeal IVD. Primary cells were then electroporized with plasmid GDF6 (Origene, vector RG211366) by optimizing parameters using the Neon Transfection system (Life Technologies, Basel). After transfection, cells were cultured in 2D monolayer or 3D alginate beads for 7, 14 or 21 days. Transfection efficiency of pGDF6 was analyzed by immunohistochemistry and fluorescent microscopy. Cell phenotype was quantified by real-time RT-PCR. To test a non-viral gene therapy applied directly to 3D whole organ culture, coccygeal bovine IVDs were harvested as previously described. Bovine IVDs were transfected by injection of plasmid GDF6 into the center. Electroporation was performed with ECM830 Square Wave Electroporation System (Harvard Apparatus, MA) using 2-needle array electrode or tweezertrodes. 72 h after tranfection discs were fixed and cryosectioned and analyzed by immunofluorescence against GDF6. Results. RT-PCR and immunohistochemistry confirmed up-regulation of GFP and GDF6 in the primary bNPC/bAFC culture. The GFP-tagged GDF6 protein, however, was not visible, possibly due to failure of dimer formation as a result of fusion structure. Organ IVD culture transfection revealed GDF6 positive staining in the center of the disc using 2-needle array electrode. Results from tweezertrodes did not show any GDF6 positive cells. Conclusion. Non-viral transfection is an appealing approach for gene therapy as it fulfills the translational safety aspects of transiency and lacks the toxic effects of viral transduction. We identified novel parameters to successfully transfect primary bovine IVD cells. For transfection of whole IVD explants electroporation parameters need to be further optimized. Acknowledgements. This project was funded by the Lindenhof Foundation (Funds “Research & Teaching”) Project no. 13-02-F. The imaging part of this study was performed with the facility of the Microscopy Imaging Center (MIC), University of Bern. References. Roughly PJ (2004): Spine (Phila), 29:2691-2699 Clarke LE, McConell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA (2014), Arthritis Research & Therapy, 16:R67
Resumo:
STUDY HYPOTHESIS Using optimized conditions, primary trophoblast cells isolated from human term placenta can develop a confluent monolayer in vitro, which morphologically and functionally resembles the microvilli structure found in vivo. STUDY FINDING We report the successful establishment of a confluent human primary trophoblast monolayer using pre-coated polycarbonate inserts, where the integrity and functionality was validated by cell morphology, biophysical features, cellular marker expression and secretion, and asymmetric glucose transport. WHAT IS KNOWN ALREADY Human trophoblast cells form the initial barrier between maternal and fetal blood to regulate materno-fetal exchange processes. Although the method for isolating pure human cytotrophoblast cells was developed almost 30 years ago, a functional in vitro model with primary trophoblasts forming a confluent monolayer is still lacking. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Human term cytotrophoblasts were isolated by enzymatic digestion and density gradient separation. The purity of the primary cells was evaluated by flow cytometry using the trophoblast-specific marker cytokeratin 7, and vimentin as an indicator for potentially contaminating cells. We screened different coating matrices for high cell viability to optimize the growth conditions for primary trophoblasts on polycarbonate inserts. During culture, cell confluency and polarity were monitored daily by determining transepithelial electrical resistance (TEER) and permeability properties of florescent dyes. The time course of syncytia-related gene expression and hCG secretion during syncytialization were assessed by quantitative RT-PCR and enzyme-linked immunosorbent assay, respectively. The morphology of cultured trophoblasts after 5 days was determined by light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Membrane makers were visualized using confocal microscopy. Additionally, glucose transport studies were performed on the polarized trophoblasts in the same system. MAIN RESULTS AND THE ROLE OF CHANCE During 5-day culture, the highly pure trophoblasts were cultured on inserts coated with reconstituted basement membrane matrix . They exhibited a confluent polarized monolayer, with a modest TEER and a size-dependent apparent permeability coefficient (Papp) to fluorescently labeled compounds (MW ∼400-70 000 Da). The syncytialization progress was characterized by gradually increasing mRNA levels of fusogen genes and elevating hCG secretion. SEM analyses confirmed a confluent trophoblast layer with numerous microvilli, and TEM revealed a monolayer with tight junctions. Immunocytochemistry on the confluent trophoblasts showed positivity for the cell-cell adhesion molecule E-cadherin, the tight junction protein 1 (ZO-1) and the membrane proteins ATP-binding cassette transporter A1 (ABCA1) and glucose transporter 1 (GLUT1). Applying this model to study the bidirectional transport of a non-metabolizable glucose derivative indicated a carrier-mediated placental glucose transport mechanism with asymmetric kinetics. LIMITATIONS, REASONS FOR CAUTION The current study is only focused on primary trophoblast cells isolated from healthy placentas delivered at term. It remains to be evaluated whether this system can be extended to pathological trophoblasts isolated from diverse gestational diseases. WIDER IMPLICATIONS OF THE FINDINGS These findings confirmed the physiological properties of the newly developed human trophoblast barrier, which can be applied to study the exchange of endobiotics and xenobiotics between the maternal and fetal compartment, as well as intracellular metabolism, paracellular contributions and regulatory mechanisms influencing the vectorial transport of molecules. LARGE-SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This study was supported by the Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Switzerland, and the Swiss National Science Foundation (grant no. 310030_149958, C.A.). All authors declare that their participation in the study did not involve factual or potential conflicts of interests.
Resumo:
BACKGROUND: Streptococcus pneumoniae causes several human diseases, including pneumonia and meningitis, in which pathology is associated with an excessive inflammatory response. A major inducer of this response is the cholesterol dependent pneumococcal toxin, pneumolysin. Here, we measured the amount of inflammatory cytokine CXCL8 (interleukin (IL)-8) by ELISA released by human nasopharyngeal epithelial (Detroit 562) cells as inflammatory response to a 24 h exposure to different pneumococcal strains. RESULTS: We found pneumolysin to be the major factor influencing the CXCL8 response. Cholesterol and sphingomyelin-containing liposomes designed to sequester pneumolysin were highly effective at reducing CXCL8 levels from epithelial cells exposed to different clinical pneumococcal isolates. These liposomes also reduced CXCL8 response from epithelial cells exposed to pneumolysin knock-out mutants of S. pneumoniae indicating that they also reduce the CXCL8-inducing effect of an unidentified pneumococcal virulence factor, in addition to pneumolysin. CONCLUSION: The results indicate the potential of liposomes in attenuating excessive inflammation as a future adjunctive treatment of pneumococcal diseases.