179 resultados para Enamel Erosion
Resumo:
New preventive approaches against dental erosion caused by acidic drinks and beverages include fortification of beverages with natural polymers. We have shown that the mixture of casein and mucin significantly improved the erosion-inhibiting properties of the human pellicle layer. This study aimed to investigate the effect of pellicle modification by casein, mucin and a casein-mucin mixture on the adhesion of early bacterial colonizers. Test specimens of human tooth enamel were prepared, covered with saliva and coated with 0.5% aqueous (aq.) casein, 0.27% aq. mucin or with 0.5% aq. casein-0.27% aq. mucin, after which the adhesion of Streptococcus gordonii, Streptococcus oralis, and Actinomyces odontolyticus was measured after incubation for 30 min and 2 h. log10 colony-forming units were compared by nonparametric tests. All three bacterial strains adhered in higher number to pellicle-coated enamel than to native enamel. The protein modifications of pellicle all decreased the counts of adhering bacteria up to 0.34 log10/mm2, the most efficient being the casein-mucin mixture. In addition to the recently shown erosion-reducing effect by casein-mucin, modification of the pellicle may inhibit bacterial adherence compared to untreated human pellicle.
Resumo:
For preventing erosive wear in dentine, coating with adhesives has been suggested as an alternative to fluoridation. However, clinical studies have revealed limited efficacy. As there is first evidence that Sn(2+) increases bond strength of the adhesive Clearfil SE (Kuraray), the aim of the present study was to investigate whether pre-treatment with different Sn(2+)/F(-) solutions improves the durability of Clearfil SE coatings. Dentine samples (eight groups, n=16/group) were freed of smear layer (0.5% citric acid, 10 s), treated (15 s) either with no solution (control), aminefluoride (AmF, 500 ppm F(-), pH 4.5), SnCl2 (800/1600 ppm Sn(2+); pH 1.5), SnCl2/AmF (500 ppm F(-), 800 ppm Sn(2+), pH 1.5/3.0/4.5), or Elmex Erosion Protection Rinse (EP, 500 ppm F-, 800 ppm Sn(2+), pH 4.5; GABA International), then rinsed with water (15 s) and individually covered with Clearfil SE. Subsequently the specimens were subjected to an erosion/abrasion protocol consisting of 1320 cycles of immersion in 0.5% citric acid (5 °C/55 °C; 2 min) and automated brushing (15 s, 200 g, NaF-toothpaste, RDA 80). As the coatings proved stable up to 1320 cycles, 60 modified cycles (brushing time 30 min/cycle) were added. Wear was measured profilometrically. After SnCl2/AmF, pH 4.5 or EP pre-treatment all except one coating survived. In the other groups, almost all coatings were lost and there was no significant difference to the control group. Pre-treatment with a Sn(2+)/F(-) solution at pH 4.5 seems able to improve the durability of adhesive coatings, rendering these an attractive option in preventing erosive wear in dentine.
Resumo:
The aim of the study was to compare fissure sealant quality after mechanical conditioning of erbium-doped yttrium aluminium garnet (Er:YAG) laser or air abrasion prior to chemical conditioning of phosphoric acid etching or of a self-etch adhesive. Twenty-five permanent molars were initially divided into three groups: control group (n = 5), phosphoric acid etching; test group 1 (n = 10), air abrasion; and test group 2, (n = 10) Er:YAG laser. After mechanical conditioning, the test group teeth were sectioned buccolingually and the occlusal surface of one half tooth (equal to one sample) was acid etched, while a self-etch adhesive was applied on the other half. The fissure system of each sample was sealed, thermo-cycled and immersed in 5% methylene dye for 24 h. Each sample was sectioned buccolingually, and one slice was analysed microscopically. Using specialized software microleakage, unfilled margin, sealant failure and unfilled area proportions were calculated. A nonparametric ANOVA model was applied to compare the Er:YAG treatment with that of air abrasion and the self-etch adhesive with phosphoric acid (α = 0.05). Test groups were compared to the control group using Wilcoxon rank sum tests (α = 0.05). The control group displayed significantly lower microleakage but higher unfilled area proportions than the Er:YAG laser + self-etch adhesive group and displayed significantly higher unfilled margin and unfilled area proportions than the air-abrasion + self-etch adhesive group. There was no statistically significant difference in the quality of sealants applied in fissures treated with either Er:YAG laser or air abrasion prior to phosphoric acid etching, nor in the quality of sealants applied in fissures treated with either self-etch adhesive or phosphoric acid following Er:YAG or air-abrasion treatment.
Resumo:
BACKGROUND Enamel matrix derivatives (EMDs) have been used clinically for more than a decade for the regeneration of periodontal tissues. The aim of the present study is to analyze the effect on cell growth of EMDs in a gel carrier in comparison to EMDs in a liquid carrier. EMDs in a liquid carrier have been shown to adsorb better to bone graft materials. METHODS Primary human osteoblasts and periodontal ligament (PDL) cells were exposed to EMDs in both gel and liquid carriers and compared for their ability to induce cell proliferation and differentiation. Alizarin red staining and real-time polymerase chain reaction for expression of genes encoding collagen 1, osteocalcin, and runt-related transcription factor 2, as well as bone morphogenetic protein 2 (BMP2), transforming growth factor (TGF)-β1, and interleukin (IL)-1β, were assessed. RESULTS EMDs in both carriers significantly increased cell proliferation of both osteoblasts and PDL cells in a similar manner. Both formulations also significantly upregulated the expression of genes encoding BMP2 and TGF-β1 as well as decreased the expression of IL-1β. EMDs in the liquid carrier further retained similar differentiation potential of both osteoblasts and PDL cells by demonstrating increased collagen and osteocalcin gene expression and significantly higher alizarin red staining. CONCLUSIONS The results from the present study indicate that the new formulation of EMDs in a liquid carrier is equally as potent as EMDs in a gel carrier in inducing osteoblast and PDL activity. Future study combining EMDs in a liquid carrier with bone grafting materials is required to further evaluate its potential for combination therapies.
Resumo:
Telomere attrition has been linked to accelerate vascular ageing and seems to predispose for vascular disease. Our aim was to study the telomere length dynamics over time and in subsets of leukocytes from 15 patients with peripheral arterial disease (PAD). The mean telomere length in subsets of leukocytes of patients with PAD was in the normal range of age-related telomere length values from healthy individuals. However, we found significant higher telomere attrition for T-cells from patients with PAD over a time period of six months when compared to the controls. The higher telomere loss in T-cells of patients with PAD most likely reflects a higher cell turnover of this leukocyte subset, which is involved in the process of chronic inflammatory disease underlying vascular disease. Further studies are needed to confirm these data and to assess how far this T-cell telomere attrition will correlate to the extent of the disease.
Resumo:
Context. The complex shape of comet 67P and its oblique rotation axis cause pronounced seasonal effects. Irradiation and hence activity vary strongly. Aims. We investigate the insolation of the cometary surface in order to predict the sublimation of water ice. The strongly varying erosion levels are correlated with the topography and morphology of the present cometary surface and its evolution. Methods. The insolation as a function of heliocentric distance and diurnal (spin dependent) variation is calculated using >10(5) facets of a detailed digital terrain model. Shading, but also illumination and thermal radiation by facets in the field of view of a specific facet are iteratively taken into account. We use a two-layer model of a thin porous dust cover above an icy surface to calculate the water sublimation, presuming steady state and a uniform surface. Our second model, which includes the history of warming and cooling due to thermal inertia, is restricted to a much simpler shape model but allows us to test various distributions of active areas. Results. Sublimation from a dirty ice surface yields maximum erosion. A thin dust cover of 50 pm yields similar rates at perihelion. Only about 6% of the surface needs to be active to match the observed water production rates at perihelion. A dust layer of 1 mm thickness suppresses the activity by a factor of 4 to 5. Erosion on the south side can reach more than 10 m per orbit at active spots. The energy input to the concave neck area (Hapi) during northern summer is enhanced by about 50% owing to self-illumination. Here surface temperatures reach maximum values along the foot of the Hathor wall. Integrated over the whole orbit this area receives the least energy input. Based on the detailed shape model, the simulations identify "hot spots" in depressions and larger pits in good correlation with observed dust activity. Three-quarters of the total sublimation is produced while the sub-solar latitude is south, resulting in a distinct dichotomy in activity and morphology. Conclusions. The northern areas display a much rougher morphology than what is seen on Imhotep, an area at the equator that will be fully illuminated when 67P is closer to the Sun. Self-illumination in concave regions enhance the energy input and hence erosion. This explains the early activity observed at Hapi. Cliffs are more prone to erosion than horizontal, often dust covered, areas, which leads to surface planation. Local activity can only persist if the forming cliff walls are eroding. Comet 67P has two lobes and also two distinct sides. Transport of material from the south to the north is probable. The morphology of the Imhotep plain should be typical for the terrains of the yet unseen southern hemisphere.
Resumo:
Since Puntam's seminal work on declining levels of social capital, the question of how social trust is formed has reached unprecedented heights of critical enquiry. While most of the current research concentrates on ethnic diversity and income inequality as the main influences driving down generalized trust, we focus on opinion polarization as another potential impact factor on trust. In more detail, we investigate the extent to which polarization over morally charged issues such as homsexuality, abortion and euthanasia affects individuals' likelihood to trust others. We hypothesize that moral issues have a natural tendency to divide societies' opinions into opposing poles and, thus, to challenge social cohesion in modern civil societies. Based on hierarchical analyses of the fifth wave of the World Values Survey (WVS) — comprising a sample of 39 countries — our results reveal that individuals living in countries characterized by more opinion polarization tend to have less trust in other people.
Resumo:
OBJECTIVES The shear bond strength of three glass ionomer cements (GIC) to enamel and dentine was evaluated. STUDY DESIGN Sound permanent human molars (n=12) were grinded perpendicular to their axial axes, exposing smooth, flat enamel and dentine surfaces. The teeth were embedded in resin and conditioned with polyacrylic acid (25%; 10s). Twenty four specimens of each GIC: Fuji IX (FJ-GC), Ketac Molar Easymix (KM-3M ESPE) and Maxxion (MX-FGM) were prepared according to the Atraumatic Restorative Treatment (ART) (12 enamel and 12 dentine), in a bonding area of 4.91 mm² and immersed in water (37°C, 24h). The shear bond strength was tested in a universal testing machine. Non-parametric statistical tests (Friedman and post-hoc Wilcoxon Signed Ranks) were carried out (p=0.05). RESULTS The mean (±sd) of shear bond strength (MPa), on enamel and dentine, were: KM (6.4±1.4 and 7.6±1.5), FJ (5.9±1.5 and 6.0±1.9) and MX (4.2±1.5 and 4.9±1.5), respectively. There was a statistically significant difference between the GICs in both groups: enamel (p=0.004) and dentine (p=0.002). The lowest shear bond value for enamel was with MX and the highest for dentine was KM (p<0.05). CONCLUSION It is concluded that KM has the best adhesion to both enamel and dentine, followed by FJ and MX.