181 resultados para CYSTIC HYGROMA
Resumo:
Epidemiological studies have demonstrated that most humans infected with Echinococcus spp. exhibit resistance to disease. When infection leads to disease, the parasite is partially controlled by host immunity: in case of immunocompetence, the normal alveolar echinococcosis (AE) or cystic echinococcosis (CE) situation, the metacestode grows slowly, and first clinical signs appear years after infection; in case of impaired immunity (AIDS; other immunodeficiencies), uncontrolled proliferation of the metacestode leads to rapidly progressing disease. Assessing Echinococcus multilocularis viability in vivo following therapeutic interventions in AE patients may be of tremendous benefit when compared with the invasive procedures used to perform biopsies. Current options are F18-fluorodeoxyglucose-positron emission tomography (FDG-PET), which visualizes periparasitic inflammation due to the metabolic activity of the metacestode, and measurement of antibodies against recEm18, a viability-associated protein, that rapidly regresses upon metacestode inactivation. For Echinococcus granulosus, similar prognosis-associated follow-up parameters are still lacking but a few candidates may be listed. Other possible markers include functional and diffusion-weighted Magnetic Resonance Imaging (MRI), and measurement of products from the parasite (circulating antigens or DNA), and from the host (inflammation markers, cytokines, or chemokines). Even though some of them have been promising in pilot studies, none has been properly validated in an appropriate number of patients until now to be recommended for further use in clinical settings. There is therefore still a need to develop reliable tools for improved viability assessment to provide the sufficient information needed to reliably withdraw anti-parasite benzimidazole chemotherapy, and a basis for the development of new alternative therapeutic tools.
Resumo:
Alveolar echinococcosis (AE), caused by larva stage of Echinococcus multilocularis, is one of the lethal parasitic diseases of man and a major public health problem in many countries in the northern hemisphere. When the living conditions and habits in Turkey were considered in terms of relation with the life cycle of the parasite, it was suggested that AE has been much more common than reported mainly from the Eastern Anatolia region of Turkey. Since in vitro serologic diagnosis tests with high specificity for AE have not been used in our country, most of the cases with liver lesions were misdiagnosed by radiological investigations as malignancies. The aim of this study was to evaluate the diagnostic value of the in-house ELISA methods developed by using three different antigens (EgHF, Em2, EmII/3-10) in the serological diagnosis of AE. The study samples included a total of 100 sera provided by Bern University Parasitology Institute where samples were obtained from patients with helminthiasis and all were confirmed by clinical, parasitological and/or histopathological means. Ten samples from each of the cases infected by E.multilocularis, E.granulosus, Taenia solium, Wuchereria bancrofti, Strongyloides stercolaris, Ascaris lumbricoides, Toxocara canis, Trichinella spiralis, Fasciola hepatica and Schistosoma haematobium were studied. In the study, EgHF (E.granulosus hydatid fluid) antigens were prepared in our laboratory from the liver cyst fluids of sheeps with cystic echinococcosis, however Em2 (E.multilocularis metacestode-purified laminated layer) and EmII/3-10 (E.multilocularis recombinant protoscolex tegument) antigens were provided by Bern University Parasitology Institute. Flat bottom ELISA plates were covered with EgHF, Em2 and EmII/3-10 antigens in the concentrations of 2.5 µg, 1 µg and 0.18 µg per well, respectively, and all sera were tested by EgHF-ELISA, Em2-ELISA and EmII/3-10-ELISA methods. For each tests, the samples which were reactive above the cut-off value (mean OD of negative controls+2 SD) were accepted as positive. The sensitivity of the ELISA tests performed with EgHF, Em2 and Em2II/3-10 antigens were estimated as 100%, 90% and 90%, respectively, whereas the specificity were 63%, 91% and 91%, respectively. When Em2-ELISA and EmII/3-10-ELISA tests were evaluated together, the specificity increased to 96%. Our data indicated that the highest sensitivity (100% with EgHF-ELISA) and specificity (96% with Em2-ELISA + EmII/3-10-ELISA) for the serodiagnosis of AE can be achieved by the combined use of the ELISA tests with three different antigens. It was concluded that the early and accurate diagnosis of AE in our country which is endemic for that disease, could be supported by the use of highly specific serological tests such as Em2-ELISA ve EmII/3-10-ELISA contributing radiological data.
Resumo:
The search for novel therapeutic options to cure alveolar echinococcosis (AE), due to the metacestode of Echinococcus multilocularis, is ongoing, and these developments could also have a profound impact on the treatment of cystic echinococcosis (CE), caused by the closely related Echinococcus granulosus s.l. Several options are being explored. A viable strategy for the identification of novel chemotherapeutically valuable compounds includes whole-organism drug screening, employing large-scale in vitro metacestode cultures and, upon identification of promising compounds, verification of drug efficacy in small laboratory animals. Clearly, the current focus is targeted towards broad-spectrum anti-parasitic or anti-cancer drugs and compound classes that are already marketed, or that are in development for other applications. The availability of comprehensive Echinococcus genome information and gene expression data, as well as significant progress on the molecular level, has now opened the door for a more targeted drug discovery approach, which allows exploitation of defined pathways and enzymes that are essential for the parasite. In addition, current in vitro and in vivo models that are used to assess drug efficacy should be optimized and complemented by methods that give more detailed information on the host-parasite interactions that occur during drug treatments. The key to success is to identify, target and exploit those parasite molecules that orchestrate activities essential to parasite survival.
Resumo:
The protein P29 is a potential serological marker for post-treatment monitoring of cystic echinococcosis (CE) especially in young patients. We now have demonstrated that P29 is encoded in the Echinococcus genus by a single gene consisting of 7 exons spanning 1.2 kb of DNA. Variability of the p29 gene at inter- and intra-species level was assessed with 50 cDNA and 280 genomic DNA clones isolated from different E. granulosus s.l. isolates (E. granulosus sensu stricto (G1), E. equinus (G4), E. ortleppi (G5), E. canadensis (G6), E. canadensis (G7) and E. canadensis (G10)) as well as four E. multilocularis isolates. Scarce interspecies polymorphism at the p29 locus was observed and affected predominantly E. granulosus s.s. (G1), where we identified two alleles (A1 and A2) coding for identical P29 proteins and yielding in three genotypes (A1/A1, A2/A2 and A1/A2). Genotypic frequencies expected under Hardy-Weinberg equilibrium revealed a high rate of heterozygosity (47%) that strongly supports the hypothesis that E. granulosus s.s. (G1) is predominantly outbreeding. Comparative sequence analyses of the complete p29 gene showed that phylogenetic relationships within the genus Echinococcus were in agreement with those of previous nuclear gene studies. At the protein level, the deduced P29 amino acid (AA) sequences exhibited a high level of conservation, ranging from 97.9% AA sequence identity among the whole E. granulosus s.l. group to 99.58% identity among E. multilocularis isolates. We showed that P29 proteins of these two species differ by three AA substitutions without implication for antigenicity. In Western-blot analyses, serum antibodies from a human CE patient infected with E. canadensis (G6) strongly reacted with recombinant P29 from E. granulosus s.s. (G1) (recEg(G1)P29). In the same line, human anti-Eg(G1)P29 antibodies bound to recEcnd(G6)P29. Thus, minor AA sequence variations appear not to impair the prognostic serological use of P29.
Resumo:
PURPOSE: Surgical site infections (SSI) are associated with increased costs and length of hospital stay, readmission rates, and mortality. The aim of this study was to identify risk factors for SSI in patients undergoing laparoscopic cholecystectomy. METHODS: Analysis of 35,432 laparoscopic cholecystectomies of a prospective multicenter database was performed. Risk factors for SSI were identified among demographic data, preoperative patients' history, and operative data using multivariate analysis. RESULTS: SSIs after laparoscopic cholecystectomy were seen in 0.8 % (n = 291) of the patients. Multivariate analysis identified the following parameters as risk factors for SSI: additional surgical procedure (odds ratio [OR] 4.0, 95 % confidence interval [CI] 2.2-7.5), age over 55 years (OR 2.4 [1.8-3.2]), conversion to open procedure (OR 2.6 [1.9-3.6]), postoperative hematoma (OR 1.9 [1.2-3.1]), duration of operation >60 min (OR 2.5 [1.7-3.6], cystic stump insufficiency (OR 12.5 [4.2-37.2]), gallbladder perforation (OR 6.2 [2.4-16.1]), gallbladder empyema (OR 1.7 [1.1-2.7]), and surgical revision (OR 15.7 [10.4-23.7]. SSIs were associated with a significantly prolonged hospital stay (p < 0.001), higher postoperative mortality (p < 0.001), and increased rate of surgical revision (p < 0.001). CONCLUSIONS: Additional surgical procedure was identified as a strong risk factor for SSI after laparoscopic cholecystectomy. Furthermore, operation time >60 min, age >55 years, conversion to open procedure, cystic stump insufficiency, postoperative hematoma, gallbladder perforation, gallbladder empyema, or surgical revision were identified as specific risk factors for SSI after laparoscopic cholecystectomy.
Resumo:
BACKGROUND The lung clearance index (LCI) measured by multiple-breath washout (MBW) has been proposed as an outcome for clinical trials; however, MBW is time consuming and LCI can be affected by breathing pattern. We aimed to evaluate moment ratios and abbreviated LCI in school-aged children with mild-to-moderate CF lung disease. METHODS Using existing data from three studies we assessed the sensitivity of moment ratios and abbreviated LCIs to (i) detect mild-to-moderate CF lung disease and (ii) detect treatment effects after 4weeks of hypertonic saline or dornase alfa inhalation. MBW was measured by respiratory mass spectrometry using 4% "sulphur hexafluoride as a tracer gas. RESULTS Compared to the traditional LCI, moment ratios and abbreviated LCIs were similarly sensitive to detect CF lung disease. Moment ratios consistently demonstrated treatment effects, whereas abbreviated LCIs were less sensitive. CONCLUSIONS Both moment ratios and abbreviated LCI are suitable to differentiate health from disease. Sensitivity is decreased for abbreviated LCIs in interventional studies in mild CF lung disease.
Serological differentiation between Echinococcus granulosus and E. multilocularis infections in man.
Resumo:
An enzyme-linked immunosorbent assay (ELISA) was adapted for the serological differential diagnosis of cystic or alveolar echinococcosis in man caused by Echinococcus granulosus or E. multilocularis respectively. By affinity chromatography using rabbit anti hydatid fluid IgG coupled covalently to CNBr-Sepharose 4B a protein fraction (Em 1) containing shared antigens of both parasites could be isolated from an extract of E. multilocularis metacestode tissue. From the same source another antigen fraction (Em 2) with a high degree of specificity for E. multilocularis was prepared by immunosorption. Antigen Em 1 was equally sensitive for the detection of antibodies against E. granulosus and E. multilocularis, whereas antigen fraction Em 2 appeared to be more specific for E. multilocularis. A correct serological differential diagnosis was achieved in 95% of 57 confirmed cases of human cystic or alveolar echinococcosis by the simultaneous use of both antigen fractions in the ELISA and by comparison of their reactivities.
Resumo:
An immunoassay (double-antibody-sandwich-ELISA) was developed to detect circulating antigens (CAg) in patients with cystic (Echinococcus granulosus) echinococcosis. Echinococcus antigens derived from heterologous intermediate hosts were used to immunize rabbits and to purify the rabbit-IgG-fraction obtained by affinity-chromatography, thus avoiding major interference with host components. The purified rabbit anti-hydatid IgG was immunosorbed with bovine and human sera. One part of the resulting IgG served as coating agent in a double antibody sandwich-ELISA; the other part, coupled to alkaline phosphatase, as detecting conjugate. The specificity of the antibody reaction was demonstrated by immunoelectrophoresis. Sera of 21 patients with cystic echinococcosis were examined with this test system. In seven of the patients' sera CAg were detected in concentrations ranging between 310 ng and 680 ng protein per ml serum. Comparing pre- and postoperative serum samples obtained from nine patients operated on for cystic echinococcosis, four sera were found to be CAg-positive before and three after operation.
Resumo:
The following new aspects of cystic and alveolar echinococcosis (= infections with the metacestode stages of Echinococcus granulosus and E. multilocularis respectively) are reported: identification of a Swiss E. granulosus isolate as "cattle strain" which differs from the "sheep strain"; new observations on proliferation and metastasis formation of larval E. multilocularis; information on chemotherapy of human echinococcosis; recent developments in immunoserology. The latter includes a new technique for serological differential diagnosis of cystic and alveolar echinococcosis, the determination of parasite-specific immunoglobulin classes (IgG, IgM, IgA and IgE) and circulating antigens in ELISA, and the introduction of arc-5 detection in routine serodiagnosis. A highly purified, species-specific antigen from E. multilocularis is now available for seroepidemiological studies.
Resumo:
Patients suffering from cystic fibrosis (CF) show thick secretions, mucus plugging and bronchiectasis in bronchial and alveolar ducts. This results in substantial structural changes of the airway morphology and heterogeneous ventilation. Disease progression and treatment effects are monitored by so-called gas washout tests, where the change in concentration of an inert gas is measured over a single or multiple breaths. The result of the tests based on the profile of the measured concentration is a marker for the severity of the ventilation inhomogeneity strongly affected by the airway morphology. However, it is hard to localize underlying obstructions to specific parts of the airways, especially if occurring in the lung periphery. In order to support the analysis of lung function tests (e.g. multi-breath washout), we developed a numerical model of the entire airway tree, coupling a lumped parameter model for the lung ventilation with a 4th-order accurate finite difference model of a 1D advection-diffusion equation for the transport of an inert gas. The boundary conditions for the flow problem comprise the pressure and flow profile at the mouth, which is typically known from clinical washout tests. The natural asymmetry of the lung morphology is approximated by a generic, fractal, asymmetric branching scheme which we applied for the conducting airways. A conducting airway ends when its dimension falls below a predefined limit. A model acinus is then connected to each terminal airway. The morphology of an acinus unit comprises a network of expandable cells. A regional, linear constitutive law describes the pressure-volume relation between the pleural gap and the acinus. The cyclic expansion (breathing) of each acinus unit depends on the resistance of the feeding airway and on the flow resistance and stiffness of the cells themselves. Special care was taken in the development of a conservative numerical scheme for the gas transport across bifurcations, handling spatially and temporally varying advective and diffusive fluxes over a wide range of scales. Implicit time integration was applied to account for the numerical stiffness resulting from the discretized transport equation. Local or regional modification of the airway dimension, resistance or tissue stiffness are introduced to mimic pathological airway restrictions typical for CF. This leads to a more heterogeneous ventilation of the model lung. As a result the concentration in some distal parts of the lung model remains increased for a longer duration. The inert gas concentration at the mouth towards the end of the expirations is composed of gas from regions with very different washout efficiency. This results in a steeper slope of the corresponding part of the washout profile.
Resumo:
Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic Aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment System varying particle number concentration independent of particle chemistry, and an aerosol Deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully differentiated HBE is most appropriate in future toxicity studies.
Resumo:
The galactose specific lectin LecA partly mediates the formation of antibiotic resistant biofilms by Pseudomonas aeruginosa, an opportunistic pathogen causing lethal airways infections in immunocompromised and cystic fibrosis patients, suggesting that preventing LecA binding to natural saccharides might provide new opportunities for treatment. Here 8-fold (G3) and 16-fold (G4) galactosylated analogs of GalAG2, a tetravalent G2 glycopeptide dendrimer LecA ligand and P. aeruginosa biofilm inhibitor, were obtained by convergent chloroacetyl thioether (ClAc) ligation between 4-fold or 8-fold chloroacetylated dendrimer cores and digalactosylated dendritic arms. Hemagglutination inhibition, isothermal titration calorimetry and biofilm inhibition assays showed that G3 dendrimers bind LecA slightly better than their parent G2 dendrimers and induce complete biofilm inhibition and dispersal of P. aeruginosa biofilms, while G4 dendrimers show reduced binding and no biofilm inhibition. A binding model accounting for the observed saturation of glycopeptide dendrimer galactosyl groups and LecA binding sites is proposed based on the crystal structure of a G3 dendrimer LecA complex.
Resumo:
PURPOSE Lymphangioleiomyomatosis (LAM) is characterized by proliferation of smooth muscle tissue that causes bronchial obstruction and secondary cystic destruction of lung parenchyma. The aim of this study was to evaluate the typical distribution of cystic defects in LAM with quantitative volumetric chest computed tomography (CT). MATERIALS AND METHODS CT examinations of 20 patients with confirmed LAM were evaluated with region-based quantification of lung parenchyma. Additionally, 10 consecutive patients were identified who had recently undergone CT imaging of the lung at our institution, in which no pathologies of the lung were found, to serve as a control group. Each lung was divided into three regions (upper, middle and lower thirds) with identical number of slices. In addition, we defined a "peel" and "core" of the lung comprising the 2 cm subpleural space and the remaining inner lung area. Computerized detection of lung volume and relative emphysema was performed with the PULMO 3D software (v3.42, Fraunhofer MEVIS, Bremen, Germany). This software package enables the quantification of emphysematous lung parenchyma by calculating the pixel index, which is defined as the ratio of lung voxels with a density <-950HU to the total number of voxels in the lung. RESULTS Cystic changes accounted for 0.1-39.1% of the total lung volume in patients with LAM. Disease manifestation in the central lung was significantly higher than in peripheral areas (peel median: 15.1%, core median: 20.5%; p=0.001). Lower thirds of lung parenchyma showed significantly less cystic changes than upper and middle lung areas combined (lower third: median 13.4, upper and middle thirds: median 19.0, p=0.001). CONCLUSION The distribution of cystic lesions in LAM is significantly more pronounced in the central lung compared to peripheral areas. There is a significant predominance of cystic changes in apical and intermediate lung zones compared to the lung bases.
Resumo:
OBJECTIVES The aims of the study were to use cone beam computed tomography (CBCT) images of nasopalatine duct cysts (NPDC) and to calculate the diameter, surface area, and 3D-volume using a custom-made software program. Furthermore, any associations of dimensions of NPDC with age, gender, presence/absence of maxillary incisors/canines (MI/MC), endodontic treatment of MI/MC, presenting symptoms, and postoperative complications were evaluated. MATERIAL AND METHODS The study comprised 40 patients with a histopathologically confirmed NPDC. On preoperative CBCT scans, curves delineating the cystic borders were drawn in all planes and the widest diameter (in millimeter), surface area (in square millimeter), and volume (in cubic millimeter) were calculated. RESULTS The overall mean cyst diameter was 15 mm (range 7-47 mm), the mean cyst surface area 566 mm(2) (84-4,516 mm(2)), and the mean cyst volume 1,735 mm(3) (65-25,350 mm(3)). For 22 randomly allocated cases, a second measurement resulted in a mean absolute aberration of ±4.2 % for the volume, ±2.8 % for the surface, and ±4.9 % for the diameter. A statistically significant association was found for the CBCT determined cyst measurements and the need for preoperative endodontic treatment to MI/MC and for postoperative complications. CONCLUSION In the hands of a single experienced operator, the novel software exhibited high repeatability for measurements of cyst dimensions. Further studies are needed to assess the application of this tool for dimensional analysis of different jaw cysts and lesions including treatment planning. CLINICAL RELEVANCE Accurate radiographic information of the bone volume lost (osteolysis) due to expansion of a cystic lesion in three dimensions could help in personalized treatment planning.
Resumo:
Vareille M, Kieninger E, Alves MP, et al. Impaired type I and type III interferon induction and rhinovirus control in human cystic fibrosis airway epithelial cells. Thorax 2012;67:517-25. This article has been retracted. In our article recently published in Thorax, we described a novel mechanism explaining the increased susceptibility of patients with cystic fibrosis (CF) to rhinovirus infections, namely defective interferon type I and III production by CF airway epithelial cells. In experiments performed after publication of the article we were unable to consistently replicate our findings of deficient interferon type I and III production by CF airway epithelial cells upon rhinovirus infection. In the light of these results, we carried out detailed investigations of the data reported in the above manuscript and regrettably found evidence of deliberate manipulation of experimental data by the first author Dr M. Vareille. This manipulation was accompanied in some instances by absence of original data files. The manipulation/original data absence involved data presented in most, if not all of the figures, thus we wish to fully retract the paper and apologise to the readers of Thorax and to the scientific community for the inconvenience this has caused. We also checked data published by our group in manuscripts on which Dr Vareille was a co-author and found that data published in these manuscripts had not been manipulated. These two manuscripts, whose data and conclusions we stand by are: Edwards MR, Regamey N, Vareille M, et al. Impaired innate interferon induction in severe therapy resistant atopic asthmatic children. Mucosal Immunol 2013;6:797–806. doi: 10.1038/mi.2012.118. and Kieninger E, Vareille M, Kopf BS, et al. Lack of an exaggerated inflammatory response on virus infection in cystic fibrosis. Eur Respir J 2012;39:297–304. doi: 10.1183/09031936.00054511. Dr. Vareille has received a letter from the Secretary General of the University of Bern condemning her scientific misconduct as a severe offence against the rules of scientific integrity. Her current employers have also been informed. All co-authors of the publication including Dr. Vareille concur with the retraction statement.