155 resultados para immunoglobulin E
Resumo:
Eosinophilic esophagitis (EoE) is a chronic disease characterized clinically by symptoms of esophageal dysfunction and histologically by eosinophil-predominant inflammation. EoE is frequently associated with concomitant atopic diseases and immunoglobulin E (IgE) sensitization to food allergens in children as well as to aeroallergens and cross-reactive plant allergen components in adults. Patients with EoE respond well to elemental and empirical food elimination diets. Recent research has, however, indicated that the pathogenesis of EoE is distinct from IgE-mediated food allergy. In this review, we discuss the individual roles of epithelial barrier defects, dysregulated innate and adaptive immune responses, and of microbiota in the pathogenesis of EoE. Although food has been recognized as a trigger factor of EoE, the mechanism by which it initiates or facilitates eosinophilic inflammation appears to be largely independent of IgE and needs to be further investigated. Understanding the pathogenic role of food in EoE is a prerequisite for the development of specific diagnostic tools and targeted therapeutic procedures. This article is protected by copyright. All rights reserved.
Resumo:
BACKGROUND Acquired thrombotic thrombocytopenic purpura (TTP) is caused by aggregation of platelets on ultralarge von Willebrand factor multimers. This microvascular thrombosis causes multiorgan ischemia with potentially life-threatening complications. Daily plasma exchange and immunosuppressive therapies induce remission, but mortality and morbidity due to microthrombosis remain high. METHODS Caplacizumab, an anti-von Willebrand factor humanized single-variable-domain immunoglobulin (Nanobody), inhibits the interaction between ultralarge von Willebrand factor multimers and platelets. In this phase 2, controlled study, we randomly assigned patients with acquired TTP to subcutaneous caplacizumab (10 mg daily) or placebo during plasma exchange and for 30 days afterward. The primary end point was the time to a response, defined as confirmed normalization of the platelet count. Major secondary end points included exacerbations and relapses. RESULTS Seventy-five patients underwent randomization (36 were assigned to receive caplacizumab, and 39 to receive placebo). The time to a response was significantly reduced with caplacizumab as compared with placebo (39% reduction in median time, P=0.005). Three patients in the caplacizumab group had an exacerbation, as compared with 11 patients in the placebo group. Eight patients in the caplacizumab group had a relapse in the first month after stopping the study drug, of whom 7 had ADAMTS13 activity that remained below 10%, suggesting unresolved autoimmune activity. Bleeding-related adverse events, most of which were mild to moderate in severity, were more common with caplacizumab than with placebo (54% of patients vs. 38%). The frequencies of other adverse events were similar in the two groups. Two patients in the placebo group died, as compared with none in the caplacizumab group. CONCLUSIONS Caplacizumab induced a faster resolution of the acute TTP episode than did placebo. The platelet-protective effect of caplacizumab was maintained during the treatment period. Caplacizumab was associated with an increased tendency toward bleeding, as compared with placebo. (Funded by Ablynx; ClinicalTrials.gov number, NCT01151423.).
Resumo:
BACKGROUND Intravenous immunoglobulin (IVIG) proved to be an efficient anti-inflammatory treatment for a growing number of neuroinflammatory diseases and protects against the development of experimental autoimmune encephalomyelitis (EAE), a widely used animal model for multiple sclerosis (MS). METHODS The clinical efficacy of IVIG and IVIG-derived F(ab')2 fragments, generated using the streptococcal cysteine proteinase Ide-S, was evaluated in EAE induced by active immunization and by adoptive transfer of myelin-specific T cells. Frequency, phenotype, and functional characteristics of T cell subsets and myeloid cells were determined by flow cytometry. Antibody binding to microbial antigen and cytokine production by innate immune cells was assessed by ELISA. RESULTS We report that the protective effect of IVIG is lost in the adoptive transfer model of EAE and requires prophylactic administration during disease induction. IVIG-derived Fc fragments are not required for protection against EAE, since administration of F(ab')2 fragments fully recapitulated the clinical efficacy of IVIG. F(ab')2-treated mice showed a substantial decrease in splenic effector T cell expansion and cytokine production (GM-CSF, IFN-γ, IL-17A) 9 days after immunization. Inhibition of effector T cell responses was not associated with an increase in total numbers of Tregs but with decreased activation of innate myeloid cells such as neutrophils, monocytes, and dendritic cells. Therapeutically effective IVIG-derived F(ab')2 fragments inhibited adjuvant-induced innate immune cell activation as determined by IL-12/23 p40 production and recognized mycobacterial antigens contained in Freund's complete adjuvant which is required for induction of active EAE. CONCLUSIONS Our data indicate that F(ab')2-mediated neutralization of adjuvant contributes to the therapeutic efficacy of anti-inflammatory IgG. These findings might partly explain the discrepancy of IVIG efficacy in EAE and MS.
Resumo:
Immunoprophylactic products against neosporosis during pregnancy should induce an appropriately balanced immune response. In this respect, OprI, a bacterial lipoprotein targeting toll like receptor (TLR)2, provides promising adjuvant properties. We report on the manipulation of the innate and the T-cell immune response through the fusion of OprI with the Neospora caninum chimeric protein Mic3-1-R. In contrast to Mic3-1-R, OprI-MIC3-1-R significantly activated bone-marrow dendritic cells from naïve mice. Mice immunized with OprI-Mic3-1-R induced an immune response with mixed T helper (Th)1 and Th2 properties (high levels of both immunoglobulin (Ig)G1 and IgG2a and of interleukin (IL)-10, IL-12(p70) and interferon-γ responses) whereas Mic3-1-R+saponin induced a clear Th2-biased response (low IgG2a and high IL-4 and IL-10). After mating and challenge with N. caninum, increased expression of interferon-γ was only found in placentas from OprI-Mic3-1-R immunized dams. However, no protection against vertical transmission and neonatal mortality was observed in either of the two groups. These results indicated that more exhaustive studies must be done to elucidate the immune mechanisms associated with transplacental transmission. Antigen linkage to TLR2-ligands, such as OprI, is a useful tool to investigate this enigma by reorienting the innate and adaptive immune responses against other candidate antigens in future studies.
Resumo:
During infection, the intestinal protozoan parasite Giardia lamblia undergoes continuous antigenic variation which is determined by diversification of the parasite's major surface antigen, named VSP (variant surface protein). One member from this protein family, VSP H7, is expressed by G. lamblia clone GS/M-83-H7. In the present study, we characterised a highly antigenic portion of VSP H7 which is positioned inside a 130 amino acid C-terminal region of the protein. This region overlaps with a cysteine-rich motif that is rather conserved within the VSP family. Detailed molecular dissection of the antigenic portion monitored a 12 amino acid peptidyl structure which constitutes a non-conformational epitope of VSP H7. In the murine host, this epitope is recognised relatively early (before day 10 p.i.) during infection and stimulates a strong intestinal immunoglobulin A response. At late infective stages (after day 10 p.i.) this immune reaction is progressively complemented by reactions against 'late' antigenic epitopes which are also located inside the 130 amino acid antigenic portion but in closer proximity to the C-terminal end of VSP H7 than the 12 amino acid epitope. Both the high antigenicity and the conserved character suggest that the 12 amino acid epitope is a key factor within the immunological interplay between G. lamblia and the experimental murine host.