155 resultados para antisense RNA
Resumo:
The RNA binding proteins RBM binding motif protein 38 (RBM38) and DEAD END 1 (DND1) selectively stabilize mRNAs by attenuating RNAse activity or protecting them from micro(mi)RNA-mediated cleavage. Furthermore, both proteins can efficiently stabilize the mRNA of the cell cycle inhibitor p21(CIP1). Since acute myeloid leukemia (AML) differentiation requires cell cycle arrest and RBM38 as well as DND1 have antiproliferative functions, we hypothesized that decreased RBM38 and DND1 expression may contribute to the differentiation block seen in this disease. We first quantified RBM38 and DND1 mRNA expression in clinical AML patient samples and CD34(+) progenitor cells and mature granulocytes from healthy donors. We found significantly lower RBM38 and DND1 mRNA levels in AML blasts and CD34(+) progenitor cells as compared to mature neutrophils from healthy donors. Furthermore, the lowest expression of both RBM38 and DND1 mRNA correlated with t(8;21). In addition, neutrophil differentiation of CD34(+) cells in vitro with G-CSF (granulocyte colony stimulating factor) resulted in a significant increase of RBM38 and DND1 mRNA levels. Similarly, neutrophil differentiation of NB4 acute promyelocytic leukemia (APL) cells was associated with a significant induction of RBM38 and DND1 expression. To address the function of RBM38 and DND1 in neutrophil differentiation, we generated two independent NB4RBM38 as well as DND1 knockdown cell lines. Inhibition of both RBM38 and DND1 mRNA significantly attenuated NB4 differentiation and resulted in decreased p21(CIP1) mRNA expression. Our results clearly indicate that expression of the RNA binding proteins RBM38 and DND1 is repressed in primary AML patients, that neutrophil differentiation is dependent on increased expression of both proteins, and that these proteins have a critical role in regulating p21(CIP1) expression during APL differentiation.
Resumo:
Ciliates have evolved highly complex and intricately controlled pathways to ensure the precise and complete removal of all genomic sequences not required for vegetative growth. At the same time, they retain a reference copy of all their genetic information for future generations. This chapter describes how different ciliates use RNA-mediated DNA comparison processes to form new somatic nuclei from germline nuclei. While these processes vary in their precise mechanisms, they all use RNA to target genomic DNA sequences—either for retention or elimination. They also all consist of more than one individual pathway acting cooperatively—the two subsets of small RNAs in Paramecium and the guide RNAs and Piwi-interacting RNAs in Oxytricha—to ensure a strong belt-and-braces approach to consistent and precise somatic nucleus development. Nonetheless, this genome comparison approach to somatic nucleus development provides an elegant method for trans-generational environmental adaptation. Conceptually, it is easy to imagine how somatic changes that occur during vegetative growth could be transferred to meiotic offspring, while an unaltered germline genome is retained. Further research in this area will have far-reaching implications for the trans-generational adaptation of more distantly related eukaryotes, such as humans.
Resumo:
OBJECTIVE To illustrate an approach to compare CD4 cell count and HIV-RNA monitoring strategies in HIV-positive individuals on antiretroviral therapy (ART). DESIGN Prospective studies of HIV-positive individuals in Europe and the USA in the HIV-CAUSAL Collaboration and The Center for AIDS Research Network of Integrated Clinical Systems. METHODS Antiretroviral-naive individuals who initiated ART and became virologically suppressed within 12 months were followed from the date of suppression. We compared 3 CD4 cell count and HIV-RNA monitoring strategies: once every (1) 3 ± 1 months, (2) 6 ± 1 months, and (3) 9-12 ± 1 months. We used inverse-probability weighted models to compare these strategies with respect to clinical, immunologic, and virologic outcomes. RESULTS In 39,029 eligible individuals, there were 265 deaths and 690 AIDS-defining illnesses or deaths. Compared with the 3-month strategy, the mortality hazard ratios (95% CIs) were 0.86 (0.42 to 1.78) for the 6 months and 0.82 (0.46 to 1.47) for the 9-12 month strategy. The respective 18-month risk ratios (95% CIs) of virologic failure (RNA >200) were 0.74 (0.46 to 1.19) and 2.35 (1.56 to 3.54) and 18-month mean CD4 differences (95% CIs) were -5.3 (-18.6 to 7.9) and -31.7 (-52.0 to -11.3). The estimates for the 2-year risk of AIDS-defining illness or death were similar across strategies. CONCLUSIONS Our findings suggest that monitoring frequency of virologically suppressed individuals can be decreased from every 3 months to every 6, 9, or 12 months with respect to clinical outcomes. Because effects of different monitoring strategies could take years to materialize, longer follow-up is needed to fully evaluate this question.
Resumo:
Chromosomal fusions are common in normal and cancer cells and can produce aberrant gene products that promote transformation. The mechanisms driving these fusions are poorly understood, but recurrent fusions are widespread. This suggests an underlying mechanism, and some authors have proposed a possible role for RNA in this process. The unicellular eukaryote Oxytricha trifallax displays an exorbitant capacity for natural genome editing, when it rewrites its germline genome to form a somatic epigenome. This developmental process provides a powerful model system to directly test the influence of small noncoding RNAs on chromosome fusion events during somatic differentiation. Here we show that small RNAs are capable of inducing chromosome fusions in four distinct cases (out of four tested), including one fusion of three chromosomes. We further show that these RNA-mediated chromosome fusions are heritable over multiple sexual generations and that transmission of the acquired fusion is associated with endogenous production of novel piRNA molecules that target the fused junction. We also demonstrate the capacity of a long noncoding RNA (lncRNA) to induce chromosome fusion of two distal germline loci. These results underscore the ability of short-lived, aberrant RNAs to act as drivers of chromosome fusion events that can be stably transmitted to future generations.