266 resultados para Liver.
Resumo:
Herbal drugs have become increasingly popular and their use is widespread. Licensing regulations and pharmacovigilance regarding herbal products are still incomplete and clearcut proof of their efficacy in liver diseases is sparse. Nevertheless, a number of herbals show promising activity including silymarin for antifibrotic treatment, phyllantus amarus in chronic hepatitis B, glycyrrhizin to treat chronic viral hepatitis, and a number of herbal combinations from China and Japan that deserve testing in appropriate studies. Apart from therapeutic properties, reports are accumulating about liver injury after the intake of herbals, including those advertised for liver diseases. Acute and/or chronic liver damage occurred after ingestion of some Chinese herbs, herbals that contain pyrrolizidine alkaloids, germander, greater celandine, kava, atractylis gummifera, callilepsis laureola, senna alkaloids, chaparral and many others. Since the evidence supporting the use of botanicals to treat chronic liver diseases is insufficient and only few of them are well standardised and free of potential serious side effects, most of these medications are not recommended outside clinical trials. Particularly with regard to the latter, adequately powered randomised-controlled clinical trials with well-selected end points are needed to assess the role of herbal therapy for liver diseases.
Resumo:
Hepatic fibrosis is the response to chronic injury from viral, toxic, metabolic, cholestatic, or autoimmune liver injury. However, only a minority of affected individuals develop advanced fibrosis or cirrhosis, suggesting that modifiers determine the individual risk. Aside from well-established progression factors including gender, duration of exposure to the disease, and ethnicity, unknown host genetic factors are likely to influence disease progression and prognosis. Potential genetic susceptibility loci are single nucleotide polymorphisms in fibrosis-associated genes, point mutations, microsatellites, and haplotype blocks composed of genes pivotal for fibrosis development. However, the study of complex polygenetic diseases poses numerous pitfalls in contrast to the elucidation of monogenetic (i.e., Mendelian) diseases. Many publications on the role of certain genetic variants in modulating the progression of hepatic fibrosis have been limited by inadequate study design and low statistical power. At present, powerful research strategies are being developed that allow the application of knowledge derived from the successful sequencing of the human genome that will help to translate our newly acquired insight into practical improvements for research activities and medical practice.
Resumo:
Neonates are particularly susceptible to malnutrition due to their limited reserves of micronutrients and their rapid growth. In the present study, we examined the effect of vitamin C deficiency on markers of oxidative stress in plasma, liver and brain of weanling guinea pigs. Vitamin C deficiency caused rapid and significant depletion of ascorbate (P < 0.001), tocopherols (P < 0.001) and glutathione (P < 0.001), and a decrease in superoxide dismutase activity (P = 0.005) in the liver, while protein oxidation was significantly increased (P = 0.011). No changes in lipid oxidation or oxidatively damaged DNA were observed in this tissue. In the brain, the pattern was markedly different. Of the measured antioxidants, only ascorbate was significantly depleted (P < 0.001), but in contrast to the liver, ascorbate oxidation (P = 0.034), lipid oxidation (P < 0.001), DNA oxidation (P = 0.13) and DNA incision repair (P = 0.014) were all increased, while protein oxidation decreased (P = 0.003). The results show that the selective preservation of brain ascorbate and induction of DNA repair in vitamin C-deficient weanling guinea pigs is not sufficient to prevent oxidative damage. Vitamin C deficiency may therefore be particularly adverse during the neonatal period.
Resumo:
Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month-old rats following supplementation with the lipophilic iron derivative [(3,5,5-trimethylhexanoyl)ferrocene] (TMHF), which is capable of crossing the blood-brain barrier. At both ages, iron concentration increased markedly in the liver but failed to increase in the brain. In the liver of TMHF-treated young rats, levels of alpha- and gamma-tocopherols and glutathione (GSH) were also higher. In contrast, the brain displayed unaltered levels of the tocopherols and GSH. Malondialdehyde (MDA) level was also higher in the cerebrospinal fluid (CSF) and the liver but not in the brain. In old rats, the absence of an increase in iron concentration in the brain was reflected by unaltered concentrations of GSH, tocopherols, and MDA as compared to that in untreated rats. In the aging liver, concentrations of GSH and MDA increased with TMHF treatment. Morphological studies revealed unaltered levels of iron, ferritin, heme oxygenase-1 (HO-1), nitrotyrosine (NT), or MDA in the brains of both young and old rats treated with TMHF. In contrast, TMHF treatment increased the level of HO-1 in Kupffer cells, NT in hepatic endothelial cells, and MDA and ferritin in hepatocytes. Although these results demonstrated an increase in the biochemical markers of oxidative stress and damage in response to increasing concentrations of iron in the liver, they also demonstrated that the brain is well protected against dietary iron overload by using iron in a lipid-soluble formulation.
Resumo:
Zymosan-induced peritonitis is associated with an increased production of reactive nitrogen oxides that may contribute to the often-observed failure of multiple organ systems in this model of acute inflammation. Quantitative biochemical evidence is provided for a marked 13-fold increase in protein-bound 3-nitrotyrosine (NTyr), a biomarker of reactive nitrogen oxides, in liver tissue of zymosan-treated rats. In order to investigate the localization of NTyr in this affected tissue, a monoclonal antibody, designated 39B6, was raised against 3-(4-hydroxy-3-nitrophenylacetamido) propionic acid-bovine serum albumin conjugate and its performance characterized. 39B6 was judged by competition ELISA to be approximately 2 orders of magnitude more sensitive than a commercial anti-NTyr monoclonal antibody. Binding characteristics of 39B6 were similar, but not identical, to that of a commercial affinity-purified polyclonal antibody in ELISA and immunohistochemical analyses. Western blot experiments revealed high specificity of 39B6 against NTyr and increased immunoreactivity of specific proteins from liver tissue homogenates of zymosan-treated rats. Immunohistochemical analysis of liver sections indicated a marked zymosan-induced increase in immunofluorescent staining, which was particularly intense in or adjacent to nonparenchymal cells, but not in the parenchymal cells of this tissue. Quantitative analysis of fractions enriched in these cell populations corroborated the immunofluorescent data, although the relative amounts detected in response to zymosan treatment was greatly reduced compared to whole liver tissue. These results demonstrate the high specificity of the newly developed antibody and its usefulness in Western blot and immunohistochemical analysis for NTyr, confirm the presence of NTyr by complementary methods, and suggest the possible involvement of reactive nitrogen oxides in hepatic vascular dysfunction.
Resumo:
Interleukin-1 beta is a potent mediator of the acute-phase response. However, the effects of interleukin-1 beta administration on the topic in vivo production of acute-phase proteins and albumin are so far not well understood. Overnight fasted rats were subcutaneously injected with 0.2 mL 0.9% NaCl (control group) or 6.25 micrograms recombinant human interleukin-1 beta, and rectal temperature was measured at intervals up to 48 h. Livers were perfused-fixed in vivo prior to injection (base-line), and at 9, 24, and 48 h following the interleukin-1 beta injection. Fibrinogen, orosomucoid (alpha 1-acid glycoprotein) and albumin were immunostained using a streptavidin-biotin-immunoperoxidase technique. Rectal temperature peaked 5 h after the single interleukin-1 beta injection, and fell gradually to base-line values by 24 h. Prior to injection only a few hepatocytes, randomly scattered throughout the liver lobule, stained positive for fibrinogen and orosomucoid. In contrast, all hepatocytes stained uniformly positive for fibrinogen and orosomucoid 9 h after interleukin-1 beta injection, whereas at 24 h a predominant centrilobular staining pattern occurred. Due to fasting, albumin positive hepatocytes were already reduced at base-line in both groups. Interleukin-1 beta induced a further significant loss of albumin positive cells in the periportal zone (35 +/- 21%) at 9 h when compared with controls (58 +/- 11%, p = 0.037). In conclusion, subcutaneous interleukin-1 beta (probably by stimulation of interleukin-6) strongly induces fibrinogen and orosomucoid expression in rat liver, and suppresses immunohistochemically stainable albumin in a heterogenous way, mainly in the periportal zone.
Resumo:
Standard toxicity tests with high levels of D-tagatose showed a reversible enlargement of the liver in Sprague-Dawley rats without increase of liver enzymes. The present study tests the hypotheses that partial substitution of dietary sucrose by D-tagatose for 28 days increases the volume of human liver and the concentration of liver glycogen. Twelve healthy, male volunteers were studied in a double-blind crossover study with ingestion of D-tagatose (3x15 g daily) and placebo (sucrose, 3x15 g daily) for periods of 28 days each. Liver volume and glycogen concentration have been determined by magnetic resonance (MR) imaging and spectroscopy, which were accompanied by routine medical examinations. MR examinations before and after the treatments revealed no effects (P>0.05) of treatment, period, or subject for changes in liver volume or glycogen concentration. A steady increase of liver volumes, independent of the D-tagatose or placebo intake, has been observed over the study in parallel with a slight increase in body weight. The treatment with D-tagatose was not associated with clinically relevant changes of the examined clinico-chemical and hematological parameters, including liver enzymes and uric acid.
Resumo:
Non-invasive pulse spectrophotometry to measure indocyanine green (ICG) elimination correlates well with the conventional invasive ICG clearance test. Nevertheless, the precision of this method remains unclear for any application, including small-for-size liver remnants. We therefore measured ICG plasma disappearance rate (PDR) during the anhepatic phase of orthotopic liver transplantation using pulse spectrophotometry. Measurements were done in 24 patients. The median PDR after exclusion of two outliers and two patients with inconstant signal was 1.55%/min (95% confidence interval [CI]=0.8-2.2). No correlation with patient age, gender, body mass, blood loss, administration of fresh frozen plasma, norepinephrine dose, postoperative albumin (serum), or difference in pre and post transplant body weight was detected. In conclusion, we found an ICG-PDR different from zero in the anhepatic phase, an overestimation that may arise in particular from a redistribution into the interstitial space. If ICG pulse spectrophotometry is used to measure functional hepatic reserve, the verified average difference from zero (1.55%/min) determined in our study needs to be taken into account.
Resumo:
BACKGROUND: Reversible ischaemia/reperfusion (I/R) liver injury has been used to induce engraftment and hepatic parenchymal differentiation of exogenous beta2-microglubulin(-)/Thy1(+) bone marrow derived cells. AIM: To test the ability of this method of hepatic parenchymal repopulation, theoretically applicable to clinical practice, to correct the metabolic disorder in a rat model of congenital hyperbilirubinaemia. METHODS AND RESULTS: Analysis by confocal laser microscopy of fluorescence labelled cells and by immunohistochemistry for beta2-microglubulin, 72 hours after intraportal delivery, showed engraftment of infused cells in liver parenchyma of rats with I/R, but not in control animals with non-injured liver. Transplantation of bone marrow derived cells obtained from GFP-transgenic rats into Lewis rats resulted in the presence of up to 20% of GFP positive hepatocytes in I/R liver lobes after one month. The repopulation rate was proportional to the number of transplanted cells. Infusion of GFP negative bone marrow derived cells into GFP positive transgenic rats resulted in the appearance of GFP negative hepatocytes, suggesting that the main mechanism underlying parenchymal repopulation was differentiation rather than cell fusion. Transplantation of wild type bone marrow derived cells into hyperbilirubinaemic Gunn rats with deficient bilirubin conjugation after I/R damage resulted in 30% decrease in serum bilirubin, the appearance of bilirubin conjugates in bile, and the expression of normal UDP-glucuronyltransferase enzyme evaluated by polymerase chain reaction. CONCLUSIONS: I/R injury induced hepatic parenchymal engraftment and differentiation into hepatocyte-like cells of bone marrow derived cells. Transplantation of bone marrow derived cells from non-affected animals resulted in the partial correction of hyperbilirubinaemia in the Gunn rat.