179 resultados para INSIGHTS
Resumo:
Objective: Since 2011, the new national final examination in human medicine has been implemented in Switzerland, with a structured clinical-practical part in the OSCE format. From the perspective of the national Working Group, the current article describes the essential steps in the development, implementation and evaluation of the Federal Licensing Examination Clinical Skills (FLE CS) as well as the applied quality assurance measures. Finally, central insights gained from the last years are presented. Methods: Based on the principles of action research, the FLE CS is in a constant state of further development. On the foundation of systematically documented experiences from previous years, in the Working Group, unresolved questions are discussed and resulting solution approaches are substantiated (planning), implemented in the examination (implementation) and subsequently evaluated (reflection). The presented results are the product of this iterative procedure. Results: The FLE CS is created by experts from all faculties and subject areas in a multistage process. The examination is administered in German and French on a decentralised basis and consists of twelve interdisciplinary stations per candidate. As important quality assurance measures, the national Review Board (content validation) and the meetings of the standardised patient trainers (standardisation) have proven worthwhile. The statistical analyses show good measurement reliability and support the construct validity of the examination. Among the central insights of the past years, it has been established that the consistent implementation of the principles of action research contributes to the successful further development of the examination. Conclusion: The centrally coordinated, collaborative-iterative process, incorporating experts from all faculties, makes a fundamental contribution to the quality of the FLE CS. The processes and insights presented here can be useful for others planning a similar undertaking. Keywords: national final examination, licensing examination, summative assessment, OSCE, action research
Resumo:
The north-eastern escarpment of Madagascar has been deemed a global hotspot of biodiversity due to its high levels of endemic speciesbeing heavily threatened by accelerated deforestation rates and landscape changes. The main concern for conservation of the remaining humid primary forests is the shifting cultivation practices of local smallholder farmers for rice production. According to the mainstream narrative, human population growth leads to a shortening of crop-fallow cycles and thus to the accelerated conversion of forests to agricultural land. However, little is currently known about the dynamic changes between forest and shifting cultivation systems at the regional level. Existing land cover change analyses in this area have so far only focused on binary forest to non-forest changes and have therefore failed to account for the dynamic nature of the change processes between forest and different agriculture land use systems. This can be partly explained by the significant challenge to delineate shifting cultivation systems on land cover maps using traditional remote sensing classification approaches. To address this gap we therefore applied a novel GIS approach, that was originally developed for the assessment of shifting cultivation dynamics in Laos and has so far never been applied elsewhere, to map shifting cultivation of different crop-fallow lengths as well as permanent agriculture land use at the regional level. Change analyses of land use maps between 1995 and 2011 allowed us to comprehend the general trends of land use trajectories and their spatial variation. This more detailed understanding of land use change dynamics is key to plan for successful interventions to slow forest loss while at the same time improving local livelihoods. We further believe that this approach holds great potential for conservation monitoring in this resource-rich but povertyprone conservation hotspot.
Resumo:
The ribosome is a highly conserved cellular complex and constitutes the center of protein biosynthesis. As the ribosome consists to about 2/3 of ribosomal RNA (rRNA), the rRNA is involved in most steps of translation. In order to investigate the role of some defined rRNA residues in different aspects of translation we use the atomic mutagenesis approach. This method allows the site-specific incorporation of unnatural nucleosides into the rRNA in the context of the complete 70S from Thermus aquaticus, and thereby exceeds the possibilities of conventional mutagenesis. We first studied ribosome-stimulated EF-G GTP hydrolysis. Here, we could show that the non-bridging phosphate oxygen of A2662, which is part of the Sarcin-Ricin-Loop, is required for EF-G GTPase activation by the ribosome. EF-G GTPase is a crucial step for tRNA translocation from the A- to the P-site, and from the P- to the E-site, respectively. We furthermore used the atomic mutagenesis approach to more precisely characterize the 23S rRNA functional groups involved in E-site tRNA binding. While the ribosomal A- and P-sites have been functionally well characterized in the past, the contribution of the E-site to protein biosynthesis is still poorly understood in molecular terms. Our data disclose the importance of the highly conserved E-site base pair G2421-C2395 for effective translation. Ribosomes with a disrupted G2421-C2395 base pair are defective in tRNA binding to the E-site. This results in an impaired translation of genuine mRNAs, while homo-polymeric templates are not affected. Cumulatively our data emphasize the importance of E-site tRNA occupancy and in particular the intactness of the 23S rRNA base pair G2421-C2395 for productive protein biosynthesis.
Resumo:
Whole exome sequencing (WES) is increasingly used in research and diagnostics. WES users expect coverage of the entire coding region of known genes as well as sufficient read depth for the covered regions. It is, however, unknown which recent WES platform is most suitable to meet these expectations. We present insights into the performance of the most recent standard exome enrichment platforms from Agilent, NimbleGen and Illumina applied to six different DNA samples by two sequencing vendors per platform. Our results suggest that both Agilent and NimbleGen overall perform better than Illumina and that the high enrichment performance of Agilent is stable among samples and between vendors, whereas NimbleGen is only able to achieve vendor- and sample-specific best exome coverage. Moreover, the recent Agilent platform overall captures more coding exons with sufficient read depth than NimbleGen and Illumina. Due to considerable gaps in effective exome coverage, however, the three platforms cannot capture all known coding exons alone or in combination, requiring improvement. Our data emphasize the importance of evaluation of updated platform versions and suggest that enrichment-free whole genome sequencing can overcome the limitations of WES in sufficiently covering coding exons, especially GC-rich regions, and in characterizing structural variants.
Resumo:
BACKGROUND The distribution of thrombus-containing lesions (TCLs) in an all-comer population admitted with a heterogeneous clinical presentation (stable, ustable angina, or an acute coronary syndrome) and treated with percutaneous coronary intervention is yet unclear, and the long-term prognostic implications are still disputed. This study sought to assess the distribution and prognostic implications of coronary thrombus, detected by coronary angiography, in a population recruited in all-comer percutaneous coronary intervention trials. METHODS AND RESULTS Patient-level data from 3 contemporary coronary stent trials were pooled by an independent academic research organization (Cardialysis, Rotterdam, the Netherlands). Clinical outcomes in terms of major adverse cardiac events (major adverse cardiac events, a composite of death, myocardial infarction, and repeat revascularization), death, myocardial infarction, and repeated revascularization were compared between patients with and without angiographic TCL. Preprocedural TCL was present in 257 patients (5.8%) and absent in 4193 (94.2%) patients. At 3-year follow-up, there was no difference for major adverse cardiac events (25.3 versus 25.4%; P=0.683); all-cause death (7.4 versus 6.8%; P=0.683); myocardial infarction (5.8 versus 6.0%; P=0.962), and any revascularizations (17.5 versus 17.7%; P=0.822) between patients with and without TCL. The comparison of outcomes in groups weighing the jeopardized myocardial by TCL also did not show a significant difference. TCL were seen more often in the first 2 segments of the right (43.6%) and left anterior descending (36.8%) coronary arteries. The association of TCL and bifurcation lesions was present in 40.1% of the prespecified segments. CONCLUSIONS TCL involved mainly the proximal coronary segments and did not have any effect on clinical outcomes. A more detailed thrombus burden quantification is required to investigate its prognostic implications. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00114972, NCT01443104, NCT00617084.
Resumo:
BACKGROUND An increased body mass index (BMI) is associated with a high risk of cardiovascular disease and reduction in life expectancy. However, several studies reported improved clinical outcomes in obese patients treated for cardiovascular diseases. The aim of the present study is to investigate the impact of BMI on long-term clinical outcomes after implantation of zotarolimus eluting stents. METHODS Individual patient data were pooled from the RESOLUTE Clinical Program comprising five trials worldwide. The study population was sorted according to BMI tertiles and clinical outcomes were evaluated at 2-year follow-up. RESULTS Data from a total of 5,127 patients receiving the R-ZES were included in the present study. BMI tertiles were as follow: I tertile (≤ 25.95 kg/m(2) -Low or normal weight) 1,727 patients; II tertile (>25.95 ≤ 29.74 kg/m(2) -overweight) 1,695 patients, and III tertile (>29.74 kg/m(2) -obese) 1,705 patients. At 2-years follow-up no difference was found for patients with high BMI (III tertile) compared with patients with normal or low BMI (I tertile) in terms of target lesion failure (I-III tertile, HR [95% CI] = 0.89 [0.69, 1.14], P = 0.341; major adverse cardiac events (I-III tertile, HR [95% CI] = 0.90 [0.72, 1.14], P = 0.389; cardiac death (I-III tertile, HR [95% CI] = 1.20 [0.73, 1.99], P = 0.476); myocardial infarction (I-III tertile, HR [95% CI] = 0.86 [0.55, 1.35], P = 0.509; clinically-driven target lesion revascularization (I-III tertile, HR [95% CI] = 0.75 [0.53, 1.08], P = 0.123; definite or probable stent thrombosis (I-III tertile, HR [95% CI] = 0.98 [0.49, 1.99], P = 0.964. CONCLUSIONS In the present study, the patients' body mass index was found to have no impact on long-term clinical outcomes after coronary artery interventions.
Resumo:
The replication of coronaviruses, as in other positive-strand RNA viruses, is closely tied to the formation of membrane-bound replicative organelles inside infected cells. The proteins responsible for rearranging cellular membranes to form the organelles are conserved not just among the Coronaviridae family members, but across the order Nidovirales. Taken together, these observations suggest that the coronavirus replicative organelle plays an important role in viral replication, perhaps facilitating the production or protection of viral RNA. However, the exact nature of this role, and the specific contexts under which it is important have not been fully elucidated. Here, we collect and interpret the recent experimental evidence about the role and importance of membrane-bound organelles in coronavirus replication.
Resumo:
BACKGROUND In percutaneous coronary intervention (PCI) patients new-generation drug-eluting stent (DES) has reduced adverse events in comparison to early-generation DES. The aim of the current study was to investigate the long-term clinical efficacy and safety of new-generation DES versus early-generation DES for PCI of unprotected left main coronary artery (uLMCA) disease. METHODS The patient-level data from the ISAR-LEFT MAIN and ISAR-LEFT MAIN 2 randomized trials were pooled. The clinical outcomes of PCI patients assigned to new-generation DES (everolimus- or zotarolimus-eluting stent) versus early-generation DES (paclitaxel- or sirolimus-eluting stent) were studied. The primary endpoint was the composite of death, myocardial infarction (MI), target lesion revascularization and stroke (MACCE, major adverse cardiac and cerebrovascular event). RESULTS In total, 1257 patients were available. At 3 years, the risk of MACCE was comparable between patients assigned to new-generation DES or early-generation DES (28.2 versus 27.5 %, hazard ratio-HR 1.03, 95 % confidence intervals-CI 0.83-1.26; P = 0.86). Definite/probable stent thrombosis was low and comparable between new-generation DES and early-generation DES (0.8 versus 1.6 %, HR 0.52, 95 % CI 0.18-1.57; P = 0.25); in patients treated with new-generation DES no cases occurred beyond 30 days. Diabetes increased the risk of MACCE in patients treated with new-generation DES but not with early-generation DES (P interaction = 0.004). CONCLUSIONS At 3-year follow-up, a PCI with new-generation DES for uLMCA disease shows comparable efficacy to early-generation DES. Rates of stent thrombosis were low in both groups. Diabetes significantly impacts the risk of MACCE at 3 years in patients treated with new-generation DES for uLMCA disease. ClinicalTrials.gov Identifiers: NCT00133237; NCT00598637.
Resumo:
The complex relation between thrombotic thrombocytopenic purpura (TTP) and pregnancy is concisely reviewed. Pregnancy is a very strong trigger for acute disease manifestation in patients with hereditary TTP caused by double heterozygous or homozygous mutations of ADAMTS13 (ADisintegrin And Metalloprotease with ThromboSpondin type 1 domains, no. 13). In several affected women disease onset during their first pregnancy leads to the diagnosis of hereditary TTP. Without plasma treatment mother and especially fetus are at high risk of dying. The relapse risk during a next pregnancy is almost 100% but regular plasma transfusion starting in early pregnancy will prevent acute TTP flare-up and may result in successful pregnancy outcome. Pregnancy may also constitute a mild risk factor for the onset of acute acquired TTP caused by autoantibody-mediated severe ADAMTS13 deficiency. Women having survived acute acquired TTP may not be at very high risk of TTP relapse during an ensuing next pregnancy but seem to have an elevated risk of preeclampsia. Monitoring of ADAMTS13 activity and inhibitor titre during pregnancy may help to guide management and to avoid disease recurrence. Finally, TTP needs to be distinguished from the much more frequent hypertensive pregnancy complications, preeclampsia and especially HELLP (Hemolysis, Elevated Liver Enzymes, Low Platelet count) syndrome.
Resumo:
Androgens are precursors for sex steroids and are predominantly produced in the human gonads and the adrenal cortex. They are important for intrauterine and postnatal sexual development and human reproduction. Although human androgen biosynthesis has been extensively studied in the past, exact mechanisms underlying the regulation of androgen production in health and disease remain vague. Here, the knowledge on human androgen biosynthesis and regulation is reviewed with a special focus on human adrenal androgen production and the hyperandrogenic disorder of polycystic ovary syndrome (PCOS). Since human androgen regulation is highly specific without a good animal model, most studies are performed on patients harboring inborn errors of androgen biosynthesis, on human biomaterials and human (tumor) cell models. In the past, most studies used a candidate gene approach while newer studies use high throughput technologies to identify novel regulators of androgen biosynthesis. Using genome wide association studies on cohorts of patients, novel PCOS candidate genes have been recently described. Variant 2 of the DENND1A gene was found overexpressed in PCOS theca cells and confirmed to enhance androgen production. Transcriptome profiling of dissected adrenal zones established a role for BMP4 in androgen synthesis. Similarly, transcriptome analysis of human adrenal NCI-H295 cells identified novel regulators of androgen production. Kinase p38α (MAPK14) was found to phosphorylate CYP17 for enhanced 17,20 lyase activity and RARB and ANGPTL1 were detected in novel networks regulating androgens. The discovery of novel players for androgen biosynthesis is of clinical significance as it provides targets for diagnostic and therapeutic use.