163 resultados para Geology--Europe, Central--Maps


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major geologic units of the Itremo region in central Madagascar include: (1) upper amphibolite to granulite facies (higher grade) Precambrian rocks, mainly para- and orthogneisses, and migmatites; (2) the newly defined Itremo Nappes, a fold-and-thrust belt containing the Proterozoic Itremo Group sediments, metamorphosed at greenschist to lower amphibolite facies (lower grade) conditions: (3) Middle Neoproterozoic and Late Neoproterozoic-Cambrian intrusives. The stratigraphic succession of the Itremo Group in the eastern part of the Itremo region is, from bottom to top: quartzites, metapelites, metacarbonates and metapelites overlain by metacarbonates. During D1 the Itremo Group sediments were detached from their continental substratum, deformed into a fold-and-thrust nappe (Itremo Nappes), and transported on top of higher grade rocks that are intruded by Middle Neoproterozoic (c. 797–780 Ma) granites and gabbros. A second phase of deformation shortening (D2) affected both the Itremo Sedimentary Nappes and structurally underlying higher-grade rocksunits, and formed large-scale N-S-trending F2 folds. S1 axial plane foliations in Itremo Group sediments are truncated by Late Neoproterozoic-Cambrian granites (c. 570–540 Ma). The age of the formation of the Itremo Nappes is not well constrained: they formed in Neoproterozoic times between 780 and 570 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Itremo region in Central Madagascar comprises a deformed metasedimentary sequence (Itremo Group) that has undergone greenschist to lower amphibolite facies metamorphism. During a first phase of deformation (D1) Itremo Group sediments were deformed into a fold-and-thrust belt and transported toward the E to NE on top of migmatitic gneisses rocks of Anatananarivo block. A second phase of deformation (D2) affected both the fold-and-thrust belt and structurally underlying units, and formed large-scale N-S trending folds with steeply dipping axial planes. A Late Neoproterozoic Th–U–Pb XRF monazite age (565±17 Ma) dates the emplacement of a granite that truncates first-phase structures in the Itremo Group, and indicates that the fold-and-thrust belt formed prior to ≈565 Ma. Th–U–Pb electron microprobe dating was applied to elongated monazites that lie within the first-phase foliation of Itremo Group metapelites. The detrital cores of zoned monazites reveal two distinct age populations at ∼2000 and 1700 Ma, the latter age giving a maximum depositional age for the Itremo Group. Statistical analysis of ages determined from the rims of zoned monazites and from unzoned monazites indicates three Late Proterozoic–Early Paleozoic monazite growth events at about 565–540, 500 and 430 Ma. The oldest age population is contemporaneous within error, with the intrusion of the dated granite. The two younger age populations are found both in the Th–U–Pb and Ar–Ar data; together with the perturbation of the Rb–Sr system we interpret both ages as due to alteration related to fluid circulation events, possibly connected to the emplacement of pegmatite fields in Central Madagascar. Syn-D1 tectonic growth of contact metamorphism minerals such as andalusite has been observed locally in metapelites along the margin of Middle Neoproterozoic (≈800 Ma) granites, suggesting that D1 in the Itremo Group is contemporaneous with the intrusion of granites at ≈800 Ma. The N-S trending D2 folds are associated with ≈E-W shortening during the final assembly of Gondwana in Late Neoproterozoic–Early Cambrian times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relative roles of high- versus low-latitude forcing of millennial-scale climate variability are still not well understood. Here we present terrestrial–marine climate profiles from the southwestern Iberian margin, a region particularly affected by precession, that show millennial climate oscillations related to a nonlinear response to the Earth's precession cycle during Marine Isotope Stage (MIS) 19. MIS 19 has been considered the best analogue to our present interglacial from an astronomical point of view due to the reduced eccentricity centred at 785 ka. In our records, seven millennial-scale forest contractions punctuated MIS 19 superimposed to two orbitally-driven Mediterranean forest expansions. In contrast to our present interglacial, we evidence for the first time low latitude-driven 5000-yr cycles of drying and cooling in the western Mediterranean region, along with warmth in the subtropical gyre related to the fourth harmonic of precession. These cycles indicate repeated intensification of North Atlantic meridional moisture transport that along with decrease in boreal summer insolation triggered ice growth and may have contributed to the glacial inception, at ∼774 ka. The freshwater fluxes during MIS 19ab amplified the cooling events in the North Atlantic promoting further cooling and leading to MIS 18 glaciation. The discrepancy between the dominant cyclicity observed during MIS 1, 2500-yr, and that of MIS 19, 5000-yr, challenges the similar duration of the Holocene and MIS 19c interglacials under natural boundary conditions.