326 resultados para Computed tomography (CT)
Resumo:
BACKGROUND Multidetector computed tomography (MDCT) may be useful to identify patients with patent foramen ovale (PFO). The aim of this study was to analyze whether a MDCT performed before pulmonary vein isolation reliably detects a PFO that may be used for access to the left atrium. METHODS AND RESULTS In 79 consecutive patients, who were referred for catheter ablation of symptomatic paroxysmal or persistent atrial fibrillation (AF), the presence of a PFO was explored by MDCT and transesophageal echocardiography (TEE). TEE was considered as the gold standard, and quality of TEE was good in all patients. In 16 patients (20.3%), MDCT could not be used for analysis because of artifacts, mainly because of AF. On TEE, a PFO was found in 15 (23.8%) of the 63 patients with usable MDCT. MDCT detected six PFO of which four were present on TEE. This corresponded to a sensitivity of 26.7%, a specificity of 95.8%, a negative predictive value of 80.7%, and a positive predictive value of 66.7%. The receiver operating characteristics curve of MDCT for the detection of PFO was 0.613 (95% confidence interval 0.493-0.732). CONCLUSIONS MDCT may detect a PFO before pulmonary isolation. However, presence of AF may lead to artifacts on MDCT impeding a meaningful analysis. Furthermore, in this study sensitivity and positive predictive value of MDCT were low and therefore MDCT was not a reliable screening tool for detection of PFO.
Resumo:
PURPOSE Computed tomography (CT) accounts for more than half of the total radiation exposure from medical procedures, which makes dose reduction in CT an effective means of reducing radiation exposure. We analysed the dose reduction that can be achieved with a new CT scanner [Somatom Edge (E)] that incorporates new developments in hardware (detector) and software (iterative reconstruction). METHODS We compared weighted volume CT dose index (CTDIvol) and dose length product (DLP) values of 25 consecutive patients studied with non-enhanced standard brain CT with the new scanner and with two previous models each, a 64-slice 64-row multi-detector CT (MDCT) scanner with 64 rows (S64) and a 16-slice 16-row MDCT scanner with 16 rows (S16). We analysed signal-to-noise and contrast-to-noise ratios in images from the three scanners and performed a quality rating by three neuroradiologists to analyse whether dose reduction techniques still yield sufficient diagnostic quality. RESULTS CTDIVol of scanner E was 41.5 and 36.4 % less than the values of scanners S16 and S64, respectively; the DLP values were 40 and 38.3 % less. All differences were statistically significant (p < 0.0001). Signal-to-noise and contrast-to-noise ratios were best in S64; these differences also reached statistical significance. Image analysis, however, showed "non-inferiority" of scanner E regarding image quality. CONCLUSIONS The first experience with the new scanner shows that new dose reduction techniques allow for up to 40 % dose reduction while still maintaining image quality at a diagnostically usable level.
Resumo:
AIM To compare the computed tomography (CT) dose and image quality with the filtered back projection against the iterative reconstruction and CT with a minimal electronic noise detector. METHODS A lung phantom (Chest Phantom N1 by Kyoto Kagaku) was scanned with 3 different CT scanners: the Somatom Sensation, the Definition Flash and the Definition Edge (all from Siemens, Erlangen, Germany). The scan parameters were identical to the Siemens presetting for THORAX ROUTINE (scan length 35 cm and FOV 33 cm). Nine different exposition levels were examined (reference mAs/peek voltage): 100/120, 100/100, 100/80, 50/120, 50/100, 50/80, 25/120, 25/100 and 25 mAs/80 kVp. Images from the SOMATOM Sensation were reconstructed using classic filtered back projection. Iterative reconstruction (SAFIRE, level 3) was performed for the two other scanners. A Stellar detector was used with the Somatom Definition Edge. The CT doses were represented by the dose length products (DLPs) (mGycm) provided by the scanners. Signal, contrast, noise and subjective image quality were recorded by two different radiologists with 10 and 3 years of experience in chest CT radiology. To determine the average dose reduction between two scanners, the integral of the dose difference was calculated from the lowest to the highest noise level. RESULTS When using iterative reconstruction (IR) instead of filtered back projection (FBP), the average dose reduction was 30%, 52% and 80% for bone, soft tissue and air, respectively, for the same image quality (P < 0.0001). The recently introduced Stellar detector (Sd) lowered the radiation dose by an additional 27%, 54% and 70% for bone, soft tissue and air, respectively (P < 0.0001). The benefit of dose reduction was larger at lower dose levels. With the same radiation dose, an average of 34% (22%-37%) and 25% (13%-46%) more contrast to noise was achieved by changing from FBP to IR and from IR to Sd, respectively. For the same contrast to noise level, an average of 59% (46%-71%) and 51% (38%-68%) dose reduction was produced for IR and Sd, respectively. For the same subjective image quality, the dose could be reduced by 25% (2%-42%) and 44% (33%-54%) using IR and Sd, respectively. CONCLUSION This study showed an average dose reduction between 27% and 70% for the new Stellar detector, which is equivalent to using IR instead of FBP.
Resumo:
PURPOSE Positron emission tomography (PET)∕computed tomography (CT) measurements on small lesions are impaired by the partial volume effect, which is intrinsically tied to the point spread function of the actual imaging system, including the reconstruction algorithms. The variability resulting from different point spread functions hinders the assessment of quantitative measurements in clinical routine and especially degrades comparability within multicenter trials. To improve quantitative comparability there is a need for methods to match different PET∕CT systems through elimination of this systemic variability. Consequently, a new method was developed and tested that transforms the image of an object as produced by one tomograph to another image of the same object as it would have been seen by a different tomograph. The proposed new method, termed Transconvolution, compensates for differing imaging properties of different tomographs and particularly aims at quantitative comparability of PET∕CT in the context of multicenter trials. METHODS To solve the problem of image normalization, the theory of Transconvolution was mathematically established together with new methods to handle point spread functions of different PET∕CT systems. Knowing the point spread functions of two different imaging systems allows determining a Transconvolution function to convert one image into the other. This function is calculated by convolving one point spread function with the inverse of the other point spread function which, when adhering to certain boundary conditions such as the use of linear acquisition and image reconstruction methods, is a numerically accessible operation. For reliable measurement of such point spread functions characterizing different PET∕CT systems, a dedicated solid-state phantom incorporating (68)Ge∕(68)Ga filled spheres was developed. To iteratively determine and represent such point spread functions, exponential density functions in combination with a Gaussian distribution were introduced. Furthermore, simulation of a virtual PET system provided a standard imaging system with clearly defined properties to which the real PET systems were to be matched. A Hann window served as the modulation transfer function for the virtual PET. The Hann's apodization properties suppressed high spatial frequencies above a certain critical frequency, thereby fulfilling the above-mentioned boundary conditions. The determined point spread functions were subsequently used by the novel Transconvolution algorithm to match different PET∕CT systems onto the virtual PET system. Finally, the theoretically elaborated Transconvolution method was validated transforming phantom images acquired on two different PET systems to nearly identical data sets, as they would be imaged by the virtual PET system. RESULTS The proposed Transconvolution method matched different PET∕CT-systems for an improved and reproducible determination of a normalized activity concentration. The highest difference in measured activity concentration between the two different PET systems of 18.2% was found in spheres of 2 ml volume. Transconvolution reduced this difference down to 1.6%. In addition to reestablishing comparability the new method with its parameterization of point spread functions allowed a full characterization of imaging properties of the examined tomographs. CONCLUSIONS By matching different tomographs to a virtual standardized imaging system, Transconvolution opens a new comprehensive method for cross calibration in quantitative PET imaging. The use of a virtual PET system restores comparability between data sets from different PET systems by exerting a common, reproducible, and defined partial volume effect.
Resumo:
Over the last two decades, imaging of the aorta has undergone a clinically relevant change. As part of the change non-invasive imaging techniques have replaced invasive intra-arterial digital subtraction angiography as the former imaging gold standard for aortic diseases. Computed tomography (CT) and magnetic resonance imaging (MRI) constitute the backbone of pre- and postoperative aortic imaging because they allow for imaging of the entire aorta and its branches. The first part of this review article describes the imaging principles of CT and MRI with regard to aortic disease, shows how both technologies can be applied in every day clinical practice, offering exciting perspectives. Recent CT scanner generations deliver excellent image quality with a high spatial and temporal resolution. Technical developments have resulted in CT scan performed within a few seconds for the entire aorta. Therefore, CT angiography (CTA) is the imaging technology of choice for evaluating acute aortic syndromes, for diagnosis of most aortic pathologies, preoperative planning and postoperative follow-up after endovascular aortic repair. However, radiation dose and the risk of contrast induced nephropathy are major downsides of CTA. Optimisation of scan protocols and contrast media administration can help to reduce the required radiation dose and contrast media. MR angiography (MRA) is an excellent alternative to CTA for both diagnosis of aortic pathologies and postoperative follow-up. The lack of radiation is particularly beneficial for younger patients. A potential side effect of gadolinium contrast agents is nephrogenic systemic fibrosis (NSF). In patients with high risk of NSF unenhanced MRA can be performed with both ECG- and breath-gating techniques. Additionally, MRI provides the possibility to visualise and measure both dynamic and flow information.
Resumo:
Previous analyses of aortic displacement and distension using computed tomography angiography (CTA) were performed on double-oblique multi-planar reformations and did not consider through-plane motion. The aim of this study was to overcome this limitation by using a novel computational approach for the assessment of thoracic aortic displacement and distension in their true four-dimensional extent. Vessel segmentation with landmark tracking was executed on CTA of 24 patients without evidence of aortic disease. Distension magnitudes and maximum displacement vectors (MDV) including their direction were analyzed at 5 aortic locations: left coronary artery (COR), mid-ascending aorta (ASC), brachiocephalic trunk (BCT), left subclavian artery (LSA), descending aorta (DES). Distension was highest for COR (2.3 ± 1.2 mm) and BCT (1.7 ± 1.1 mm) compared with ASC, LSA, and DES (p < 0.005). MDV decreased from COR to LSA (p < 0.005) and was highest for COR (6.2 ± 2.0 mm) and ASC (3.8 ± 1.9 mm). Displacement was directed towards left and anterior at COR and ASC. Craniocaudal displacement at COR and ASC was 1.3 ± 0.8 and 0.3 ± 0.3 mm. At BCT, LSA, and DES no predominant displacement direction was observable. Vessel displacement and wall distension are highest in the ascending aorta, and ascending aortic displacement is primarily directed towards left and anterior. Craniocaudal displacement remains low even close to the left cardiac ventricle.
Resumo:
The objective of this study was to determine if area measurements of pleural fluid on computed tomography (CT) reflect the actual pleural fluid volume (PEvol) as measured at autopsy, to establish a formula to estimate the volume of pleural effusion (PEest), and to test the accuracy and observer reliability of PEest.132 human cadavers, with pleural effusion were divided into phase 1 (n = 32) and phase 2 (n = 100). In phase 1, PEvol was compared to area measurements on axial (axA), sagittal (sagA), and coronal (corA) CT images. Linear regression analysis was used to create a formula to calculate PEest. In phase 2, intra-class correlation (ICC) was used to assess inter-reader reliability and determine the agreement between PEest and PEvol. PEvol correlated to a higher degree to axA (r s mean = 0.738; p < 0.001) than to sagA (r s mean = 0.679, p < 0.001) and corA (r s mean = 0.709; p < 0.001). PEest can be established with the following formula: axA × 0.1 = PEest. Mean difference between PEest and PEvol was less than 40 mL (ICC = 0.837-0.874; p < 0.001). Inter-reader reliability was higher between two experienced readers (ICC = 0.984-0.987; p < 0.001) than between an inexperienced reader and both experienced readers (ICC = 0.660-0.698; p < 0.001). Pleural effusions may be quantified in a rapid, reliable, and reasonably accurate fashion using single area measurements on CT.
Resumo:
The aim of this study was to evaluate the reliability of the cardiothoracic ratio (CTR) in postmortem computed tomography (PMCT) and to assess a CTR threshold for the diagnosis of cardiomegaly based on the weight of the heart at autopsy. PMCT data of 170 deceased human adults were retrospectively evaluated by two blinded radiologists. The CTR was measured on axial computed tomography images and the actual cardiac weight was weighed at autopsy. Inter-rater reliability, sensitivity, and specificity were calculated. Receiver operating characteristic curves were calculated to assess enlarged heart weight by CTR. The autopsy definition of cardiomegaly was based on normal values of the Zeek method (within a range of both, one or two SD) and the Smith method (within the given range). Intra-class correlation coefficients demonstrated excellent agreements (0.983) regarding CTR measurements. In 105/170 (62 %) cases the CTR in PMCT was >0.5, indicating enlarged heart weight, according to clinical references. The mean heart weight measured in autopsy was 405 ± 105 g. As a result, 114/170 (67 %) cases were interpreted as having enlarged heart weights according to the normal values of Zeek within one SD, while 97/170 (57 %) were within two SD. 100/170 (59 %) were assessed as enlarged according to Smith's normal values. The sensitivity/specificity of the 0.5 cut-off of the CTR for the diagnosis of enlarged heart weight was 78/71 % (Zeek one SD), 74/55 % (Zeek two SD), and 76/59 % (Smith), respectively. The discriminative power between normal heart weight and cardiomegaly was 79, 73, and 74 % for the Zeek (1SD/2SD) and Smith methods respectively. Changing the CTR threshold to 0.57 resulted in a minimum specificity of 95 % for all three definitions of cardiomegaly. With a CTR threshold of 0.57, cardiomegaly can be identified with a very high specificity. This may be useful if PMCT is used by forensic pathologists as a screening tool for medico-legal autopsies.
Resumo:
Sickle cell anemia (SCA) is a hemolytic disease characterized by the production of abnormal hemoglobin chains and distorted red blood cell morphology or sickling. "Sickle cell crisis" includes vaso-occlusive crisis, a plastic crisis, sequestration crisis, haemolytic crisis and often culminating in serious complications, organ damage and even sudden death. Post-mortem computed tomography (PMCT) findings of sickle cell disease have never been reported in literature. This case of sudden death from acute hemolytic crisis in SCA where post-mortem computed tomography (PMCT) and autopsy findings complemented each other, both revealing findings invisible to the other and both crucial to the case.
Resumo:
We report a case of an acute hypertensive, intracerebral hemorrhage on post-mortem computed tomography (PMCT) in a decomposed corpse. In clinical radiology, the appearance of blood on cross-sectional imaging is used to estimate the age of intracranial hemorrhage. The findings from this case indicate that characteristics of intracerebral blood on PMCT provide a still frame of the hemorrhage, as it was at the time of death. This observation suggests that the appearance of blood on PMCT may be used to estimate the age of an intracerebral hemorrhage but not to estimate the post-mortem interval.
Resumo:
INTRODUCTION The aim of this study was to determine the reproducibility and accuracy of linear measurements on 2 types of dental models derived from cone-beam computed tomography (CBCT) scans: CBCT images, and Anatomodels (InVivoDental, San Jose, Calif); these were compared with digital models generated from dental impressions (Digimodels; Orthoproof, Nieuwegein, The Netherlands). The Digimodels were used as the reference standard. METHODS The 3 types of digital models were made from 10 subjects. Four examiners repeated 37 linear tooth and arch measurements 10 times. Paired t tests and the intraclass correlation coefficient were performed to determine the reproducibility and accuracy of the measurements. RESULTS The CBCT images showed significantly smaller intraclass correlation coefficient values and larger duplicate measurement errors compared with the corresponding values for Digimodels and Anatomodels. The average difference between measurements on CBCT images and Digimodels ranged from -0.4 to 1.65 mm, with limits of agreement values up to 1.3 mm for crown-width measurements. The average difference between Anatomodels and Digimodels ranged from -0.42 to 0.84 mm with limits of agreement values up to 1.65 mm. CONCLUSIONS Statistically significant differences between measurements on Digimodels and Anatomodels, and between Digimodels and CBCT images, were found. Although the mean differences might be clinically acceptable, the random errors were relatively large compared with corresponding measurements reported in the literature for both Anatomodels and CBCT images, and might be clinically important. Therefore, with the CBCT settings used in this study, measurements made directly on CBCT images and Anatomodels are not as accurate as measurements on Digimodels.
Resumo:
OBJECTIVES Cone beam computed tomography (CBCT) is frequently used in treatment planning for alveolar bone grafting (ABG) and orthognathic surgery in patients with cleft lip and palate (CLP). CBCT images may depict coincident findings. The aim of this study was to assess the prevalence of incidental findings on CBCT scans in CLP patients. SUBJECTS AND METHODS Initial CBCTs taken from consecutive patients (n = 187; mean age 11.7 years, range 6.9-45) with a non-syndromic orofacial cleft from January 2006 until June 2012 were systematically evaluated. Twenty-eight patients (mean age 19.3 years, range 13.2-30.9) had been subjected to ABG before their first CBCT was taken; 61 patients had a CBCT before and after ABG. Sinuses, nasopharynx, oropharynx, throat, skull, vertebrae, temporomandibular joint (TMJ), maxilla and mandible were checked for incidental findings. RESULTS On 95.1 % of the CBCTs, incidental findings were found. The most prevalent were airway/sinus findings (56.1 %), followed by dental problems, e.g. missing teeth (52 %), nasal septum deviation (34 %), middle ear and mastoid opacification, suggestive for otitis media (10 %) and (chronic) mastoiditis (9 %), abnormal TMJ anatomy (4.9 %) and abnormal vertebral anatomy (1.6 %). In the 28 patients whose first CBCT was taken at least 2 years after ABG, bone was still present in the reconstructed cleft area except in 2 out of 12 patients with a bilateral CLP. The ABG donor site (all bone grafts were taken from the chin area) was still recognizable in over 50 % of the patients. Based on the CBCT findings, 10 % of the patients were referred for further diagnosis and 9 % for further treatment related to dental problems. CONCLUSION Incidental findings are common on CBCTs. Compared with the literature, CLP patients have more dental, nasal and ear problems. Thus, whenever a CBCT is available, this scan should be reviewed by all specialists in the CLP team focusing on their specific background knowledge concerning symptoms and treatment of these patients. CLINICAL RELEVANCE The high number of findings indicates that CBCT imaging is a helpful tool in the treatment of CLP patients not only related to alveolar bone grafting and orthognathic surgery but it also provides diagnostic information for almost all specialties involved in CLP treatment.
Resumo:
PURPOSE To analyze available evidence on the incidence of anatomical variations or disease of the maxillary sinuses as identified by cone beam computed tomography (CBCT) in dentistry. MATERIALS AND METHODS A focused question was developed to search the electronic databases MEDLINE, EMBASE, the Cochrane Oral Health Group Trials Register, and CENTRAL and identify all relevant papers published between 1980 and January 19, 2013. Unpublished literature at ClinicalTrials.gov, in the National Research Register, and in the Pro-Quest Dissertation Abstracts and Thesis database was also included. Studies were included irrespective of language. These results were supplemented by hand and gray literature searches. RESULTS Twenty-two studies were identified. Twenty were retrospective cohort studies, one was a prospective cohort study, and one was a case control study. The main indication for CBCT was dental implant treatment planning, and the majority of studies used a small field of view for imaging. The most common anatomical variations included increased thickness of the sinus membrane, the presence of sinus septa, and pneumatization. Reported sinus disease frequency varied widely, ranging from 14.3% to 82%. There was a wide range in the reported prevalence of mucosal thickening related to apical pathology, the degree of lumenal opacification, features of sinusitis, and the presence of retention cysts and polyps. More pathologic findings in the maxillary sinus were reported in men than in women, and the medial wall and sinus floor were most frequently affected. CONCLUSION CBCT is used primarily to evaluate bony anatomy and to screen for overt pathology of the maxillary sinuses prior to dental implant treatment. Differences in the classification of mucosal findings are problematic in the consistent and valid assessment of health and disease of the maxillary sinus.