161 resultados para COMPUTED


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To evaluate whether magnetic resonance imaging (MRI) is effective as computed tomography (CT) in determining morphologic and functional pulmonary changes in patients with cystic fibrosis (CF) in association with multiple clinical parameters. MATERIALS AND METHODS Institutional review board approval and patient written informed consent were obtained. In this prospective study, 30 patients with CF (17 men and 13 women; mean (SD) age, 30.2 (9.2) years; range, 19-52 years) were included. Chest CT was acquired by unenhanced low-dose technique for clinical purposes. Lung MRI (1.5 T) comprised T2- and T1-weighted sequences before and after the application of 0.1-mmol·kg gadobutrol, also considering lung perfusion imaging. All CT and MR images were visually evaluated by using 2 different scoring systems: the modified Helbich and the Eichinger scores. Signal intensity of the peribronchial walls and detected mucus on T2-weighted images as well as signal enhancement of the peribronchial walls on contrast-enhanced T1-weighted sequences were additionally assessed on MRI. For the clinical evaluation, the pulmonary exacerbation rate, laboratory, and pulmonary functional parameters were determined. RESULTS The overall modified Helbich CT score had a mean (SD) of 15.3 (4.8) (range, 3-21) and median of 16.0 (interquartile range [IQR], 6.3). The overall modified Helbich MR score showed slightly, not significantly, lower values (Wilcoxon rank sum test and Student t test; P > 0.05): mean (SD) of 14.3 (4.7) (range, 3-20) and median of 15.0 (IQR, 7.3). Without assessment of perfusion, the overall Eichinger score resulted in the following values for CT vs MR examinations: mean (SD), 20.3 (7.2) (range, 4-31); and median, 21.0 (IQR, 9.5) vs mean (SD), 19.5 (7.1) (range, 4-33); and median, 20.0 (IQR, 9.0). All differences between CT and MR examinations were not significant (Wilcoxon rank sum tests and Student t tests; P > 0.05). In general, the correlations of the CT scores (overall and different imaging parameters) to the clinical parameters were slightly higher compared to the MRI scores. However, if all additional MRI parameters were integrated into the scoring systems, the correlations reached the values of the CT scores. The overall image quality was significantly higher for the CT examinations compared to the MRI sequences. CONCLUSIONS One major diagnostic benefit of lung MRI in CF is the possible acquisition of several different morphologic and functional imaging features without the use of any radiation exposure. Lung MRI shows reliable associations with CT and clinical parameters, which suggests its implementation in CF for routine diagnosis, which would be particularly important in follow-up imaging over the long term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE The aim of this study was to investigate the performance of the arterial enhancement fraction (AEF) in multiphasic computed tomography (CT) acquisitions to detect hepatocellular carcinoma (HCC) in liver transplant recipients in correlation with the pathologic analysis of the corresponding liver explants. MATERIALS AND METHODS Fifty-five transplant recipients were analyzed: 35 patients with 108 histologically proven HCC lesions and 20 patients with end-stage liver disease without HCC. Six radiologists looked at the triphasic CT acquisitions with the AEF maps in a first readout. For the second readout without the AEF maps, 3 radiologists analyzed triphasic CT acquisitions (group 1), whereas the other 3 readers had 4 contrast acquisitions available (group 2). A jackknife free-response reader receiver operating characteristic analysis was used to compare the readout performance of the readers. Receiver operating characteristic analysis was used to determine the optimal cutoff value of the AEF. RESULTS The figure of merit (θ = 0.6935) for the conventional triphasic readout was significantly inferior compared with the triphasic readout with additional use of the AEF (θ = 0.7478, P < 0.0001) in group 1. There was no significant difference between the fourphasic conventional readout (θ = 0.7569) and the triphasic readout (θ = 0.7615, P = 0.7541) with the AEF in group 2. Without the AEF, HCC lesions were detected with a sensitivity of 30.7% (95% confidence interval [CI], 25.5%-36.4%) and a specificity of 97.1% (96.0%-98.0%) by group 1 looking at 3 CT acquisition phases and with a sensitivity of 42.1% (36.2%-48.1%) and a specificity of 97.5% (96.4%-98.3%) in group 2 looking at 4 CT acquisition phases. Using the AEF maps, both groups looking at the same 3 acquisition phases, the sensitivity was 47.7% (95% CI, 41.9%-53.5%) with a specificity of 97.4% (96.4%-98.3%) in group 1 and 49.8% (95% CI, 43.9%-55.8%)/97.6% (96.6%-98.4%) in group 2. The optimal cutoff for the AEF was 50%. CONCLUSION The AEF is a helpful tool to screen for HCC with CT. The use of the AEF maps may significantly improve HCC detection, which allows omitting the fourth CT acquisition phase and thus making a 25% reduction of radiation dose possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the diagnostic criteria and to identify the radiological signs (derived from known radiological signs) for the detection of aortic dissections using postmortem computed tomography (PMCT). Thirty-three aortic dissection cases were retrospectively evaluated; all underwent PMCT and autopsy. The images were initially evaluated independently by two readers and were subsequently evaluated in consensus. Known radiological signs, such as dislocated calcification and an intimomedial flap, were identified. The prevalence of the double sedimentation level in the true and false lumen of the dissected aorta was assessed and defined as a postmortem characteristic sign of aortic dissection. Dislocated calcification was detected in 85% of the cases with aortic calcification; whereas in 54% of the non-calcified aortas, the intimomedial flap could also be recognized. Double sedimentation was identified in 16/33 of the cases. Overall, in 76% (25/33) of the study cases, the described signs, which are indicative for aortic dissection, could be identified. In this study, three diagnostic criteria of aortic dissection were identified using non-enhanced PMCT images of autopsy-confirmed dissection cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE The purpose of this study was to compare postmortem computed tomography with forensic autopsy regarding their diagnostic reliability of differentiating between pre-existing cerebral edema and physiological postmortem brain swelling. MATERIALS AND METHODS The study collective included a total of 109 cases (n=109/200, 83 male, 26 female, mean age: 53.2 years) and were retrospectively evaluated for the following parameters (as related to the distinct age groups and causes of death): tonsillar herniation, the width of the outer and inner cerebrospinal fluid spaces and the radiodensity measurements (in Hounsfield Units) of the gray and white matter. The results were compared with the findings of subsequent autopsies as the gold standard for diagnosing cerebral edema. p-Values <0.05 were considered statistically significant. RESULTS Cerebellar edema (despite normal postmortem swelling) can be reliably assessed using postmortem computed tomography and is indicated by narrowed temporal horns and symmetrical herniation of the cerebellar tonsils (p<0.001). There was a significant difference (p<0.001) between intoxication (or asphyxia) and all other causes of death; the former causes demonstrated higher deviations of the attenuation between white and gray matter (>20 Hounsfield Units), and the gray to white matter ratio was >1.58 when leukoencephalopathy was excluded. CONCLUSIONS Despite normal postmortem changes, generalized brain edema can be differentiated on postmortem computed tomography, and white and gray matter Hounsfield measurements help to determine the cause of death in cases of intoxication or asphyxia. Racking the brain about feasible applications for a precise and reliable brain diagnostic forensic radiology method has just begun.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE The aim of this study was to directly compare metal artifact reduction (MAR) of virtual monoenergetic extrapolations (VMEs) from dual-energy computed tomography (CT) with iterative MAR (iMAR) from single energy in pelvic CT with hip prostheses. MATERIALS AND METHODS A human pelvis phantom with unilateral or bilateral metal inserts of different material (steel and titanium) was scanned with third-generation dual-source CT using single (120 kVp) and dual-energy (100/150 kVp) at similar radiation dose (CT dose index, 7.15 mGy). Three image series for each phantom configuration were reconstructed: uncorrected, VME, and iMAR. Two independent, blinded radiologists assessed image quality quantitatively (noise and attenuation) and subjectively (5-point Likert scale). Intraclass correlation coefficients (ICCs) and Cohen κ were calculated to evaluate interreader agreements. Repeated measures analysis of variance and Friedman test were used to compare quantitative and qualitative image quality. Post hoc testing was performed using a corrected (Bonferroni) P < 0.017. RESULTS Agreements between readers were high for noise (all, ICC ≥ 0.975) and attenuation (all, ICC ≥ 0.986); agreements for qualitative assessment were good to perfect (all, κ ≥ 0.678). Compared with uncorrected images, VME showed significant noise reduction in the phantom with titanium only (P < 0.017), and iMAR showed significantly lower noise in all regions and phantom configurations (all, P < 0.017). In all phantom configurations, deviations of attenuation were smallest in images reconstructed with iMAR. For VME, there was a tendency toward higher subjective image quality in phantoms with titanium compared with uncorrected images, however, without reaching statistical significance (P > 0.017). Subjective image quality was rated significantly higher for images reconstructed with iMAR than for uncorrected images in all phantom configurations (all, P < 0.017). CONCLUSIONS Iterative MAR showed better MAR capabilities than VME in settings with bilateral hip prosthesis or unilateral steel prosthesis. In settings with unilateral hip prosthesis made of titanium, VME and iMAR performed similarly well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To compare the accuracy of radiography and computed tomography (CT) in predicting implant position in relation to the vertebral canal in the cervical and thoracolumbar vertebral column. STUDY DESIGN In vitro imaging and anatomic study. ANIMALS Medium-sized canine cadaver vertebral columns (n=12). METHODS Steinmann pins were inserted into cervical and thoracolumbar vertebrae based on established landmarks but without predetermination of vertebral canal violation. Radiographs and CT images were obtained and evaluated by 6 individuals. A random subset of pins was evaluated for ability to distinguish left from right pins on radiographs. The ability to correctly identify vertebral canal penetration for all pins was assessed both on radiographs and CT. Spines were then anatomically prepared and visual examination of pin penetration into the canal served as the gold standard. RESULTS Left/right accuracy was 93.1%. Overall sensitivity of radiographs and CT to detect vertebral canal penetration by an implant were significantly different and estimated as 50.7% and 93.4%, respectively (P<.0001). Sensitivity was significantly higher for complete versus partial penetration and for radiologists compared with nonradiologists for both imaging modalities. Overall specificity of radiographs and CT to detect vertebral canal penetration was 82.9% and 86.4%, respectively (P=.049). CONCLUSIONS CT was superior to radiographic assessment and is the recommended imaging modality to assess penetration into the vertebral canal. CLINICAL RELEVANCE CT is significantly more accurate in identifying vertebral canal violation by Steinmann pins and should be performed postoperatively to assess implant position.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE The improvement in diagnostic accuracy and optimization of treatment planning in periodontology through the use of three-dimensional imaging with cone beam computed tomography (CBCT) is discussed controversially in the literature. The objective was to identify the best available external evidence for the indications of CBCT for periodontal diagnosis and treatment planning in specific clinical situations. DATA SOURCES A systematic literature search was performed for articles published by 2 March 2015 using electronic databases and hand search. Two reviewers performed the study selection, data collection, and validity assessment. PICO and PRISMA criteria were applied. From the combined search, seven studies were finally included. CONCLUSION The case series were published from the years 2009 to 2014. Five of the included publications refer to maxillary and/or mandibular molars and two to aspects related to vertical bony defects. Two studies show a high accuracy of CBCT in detecting intrabony defect morphology when compared to periapical radiographs. Particularly, in maxillary molars, CBCT provides high accuracy for detecting furcation involvement and morphology of surrounding periodontal tissues. CBCT has demonstrated advantages, when more invasive treatment approaches were considered in terms of decision making and cost benefit. Within their limits, the available data suggest that CBCT may improve diagnostic accuracy and optimize treatment planning in periodontal defects, particularly in maxillary molars with furcation involvement, and that the higher irradiation doses and cost-benefit ratio should be carefully analyzed before using CBCT for periodontal diagnosis and treatment planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To analyze the indications and frequency for three-dimensional (3D) imaging for implant treatment planning in a pool of patients referred to a specialty clinic over a 3-year period. MATERIALS AND METHODS All patients who received dental implants between 2008 and 2010 at the Department of Oral Surgery and Stomatology at the University of Bern were included in the study. The influence of age, gender, and time of treatment (2008 to 2010) on the frequency of use of two-dimensional (2D) radiographic imaging modalities alone or in combination with 3D cone beam computed tomography (CBCT) scans was analyzed. Furthermore, the influence of the indication, location, and need for bone augmentation on the frequency of use of 2D imaging modalities alone or in combination with CBCT was evaluated. RESULTS In all, 1,568 patients (792 women and 776 men) received 2,279 implants. Overall, 633 patients (40.4%) were analyzed with 2D imaging procedures alone. CBCT was performed in 935 patients (59.6%). There was a statistically significant increase in CBCT between 2008 and 2010. Patients older than 55 years received a CBCT scan in addition to 2D radiographic imaging statistically significantly more often. Additional 3D imaging was most frequently performed in the posterior maxilla, whereas 2D radiographs alone exhibited the highest frequency in the anterior mandible. The combination of 2D with CBCT was used predominantly for implant placement with simultaneous or staged guided bone regeneration or sinus elevation. CONCLUSION Based on these findings from a specialty clinic, the use of additional CBCT imaging for implant treatment planning is influenced by the indication, location, local anatomy (including the need for bone augmentation), and the age of the patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to evaluate the diagnostic accuracy of full-body linear X-ray scanning (LS) in multiple trauma patients in comparison to 128-multislice computed tomography (MSCT). Materials and Methods: 106 multiple trauma patients (female: 33; male: 73) were retrospectively included in this study. All patients underwent LS of the whole body, including extremities, and MSCT covering the neck, thorax, abdomen, and pelvis. The diagnostic accuracy of LS for the detection of fractures of the truncal skeleton and pneumothoraces was evaluated in comparison to MSCT by two observers in consensus. Extremity fractures detected by LS were documented. Results: The overall sensitivity of LS was 49.2 %, the specificity was 93.3 %, the positive predictive value was 91 %, and the negative predictive value was 57.5 %. The overall sensitivity for vertebral fractures was 16.7 %, and the specificity was 100 %. The sensitivity was 48.7 % and the specificity 98.2 % for all other fractures. Pneumothoraces were detected in 12 patients by CT, but not by LS. 40 extremity fractures were detected by LS, of which 4 fractures were dislocated, and 2 were fully covered by MSCT. Conclusion: The diagnostic accuracy of LS is limited in the evaluation of acute trauma of the truncal skeleton. LS allows fast whole-body X-ray imaging, and may be valuable for detecting extremity fractures in trauma patients in addition to MSCT. Key Points: • The overall sensitivity of LS for truncal skeleton injuries in multiple-trauma patients was < 50 %.• The diagnostic reference standard MSCT is the preferred and reliable imaging modality.• LS may be valuable for quick detection of extremity fractures. Citation Format: • Jöres APW., Heverhagen JT, Bonél H et al. Diagnostic Accuracy of Full-Body Linear X-Ray Scanning in Multiple Trauma Patients in Comparison to Computed Tomography. Fortschr Röntgenstr 2016; 188: 163 - 171.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of analogue model experiments in geology is to simulate structures in nature under specific imposed boundary conditions using materials whose rheological properties are similar to those of rocks in nature. In the late 1980s, X-ray computed tomography (CT) was first applied to the analysis of such models. In early studies only a limited number of cross-sectional slices could be recorded because of the time involved in CT data acquisition, the long cooling periods for the X-ray source and computational capacity. Technological improvements presently allow an almost unlimited number of closely spaced serial cross-sections to be acquired and calculated. Computer visualization software allows a full 3D analysis of every recorded stage. Such analyses are especially valuable when trying to understand complex geological structures, commonly with lateral changes in 3D geometry. Periodic acquisition of volumetric data sets in the course of the experiment makes it possible to carry out a 4D analysis of the model, i.e. 3D analysis through time. Examples are shown of 4D analysis of analogue models that tested the influence of lateral rheological changes on the structures obtained in contractional and extensional settings.